• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis Of 3-d Grain Burnback Of Solid Propellant Rocket Motors And Verification With Rocket Motor Tests

Puskulcu, Gokay 01 August 2004 (has links) (PDF)
Solid propellant rocket motors are the most widely used propulsion systems for military applications that require high thrust to weight ratio for relatively short time intervals. Very wide range of magnitude and duration of the thrust can be obtained from solid propellant rocket motors by making some small changes at the design of the rocket motor. The most effective of these design criteria is the geometry of the solid propellant grain. So the most important step in designing the solid propellant rocket motor is determination of the geometry of the solid propellant grain. The performance prediction of the solid rocket motor can be achieved easily if the burnback steps of the rocket motor are known. In this study, grain burnback analysis for some 3-D grain geometries is investigated. The method used is solid modeling of the propellant grain for some predefined intervals of burnback. In this method, the initial grain geometry is modeled parametrically using commercial software. For every burn step, the parameters are adapted. So the new grain geometry for every burnback step is modeled. By analyzing these geometries, burn area change of the grain geometry is obtained. Using this data and internal ballistics parameters, the performance of the solid propellant rocket motor is achieved. To verify the outputs obtained from this study, rocket motor tests are performed. The results obtained from this study shows that, the procedure that was developed, can be successfully used for the preliminary design of a solid propellant rocket motor where a lot of different geometries are examined.
2

Storage Reliability Analysis Of Solid Rocket Propellants

Hasanoglu, Mehmet Sinan 01 August 2008 (has links) (PDF)
Solid propellant rocket motor is the primary propulsion technology used for short and medium range missiles. It is also commonly used as boost motor in many di_erent applications. Its wide spread usage gives rise to diversity of environments in which it is handled and stored. Ability to predict the storage life of solid propellants plays an important role in the design and selection of correct protective environments. In this study a methodology for the prediction of solid propellant storage life using cumulative damage concepts is introduced. Finite element mesh of the solid propellant grain is created with the developed parametric grain geometry generator. Finite element analyses are carried out to obtain the temperature and stress response of the propellant to the environmental thermal loads. Daily thermal cycles are assumed to be sinusoidal cycles represented by their means and amplitudes. With the cumulative damage analyses, daily damage accumulated in the critical locations of the solid propellant grain are investigated. Meta-models relating the daily damage amount with the daily temperature cycles are constructed in order to compute probability of failure. The results obtained in this study imply that it is possible to make numerical predictions for the storage life of solid propellants even in the early design phases. The methodology presented in this study provides a basis for storage life predictions.

Page generated in 0.0782 seconds