• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 831
  • 204
  • 133
  • 102
  • 42
  • 12
  • 12
  • 8
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 1730
  • 297
  • 288
  • 281
  • 227
  • 210
  • 203
  • 186
  • 174
  • 146
  • 140
  • 127
  • 120
  • 114
  • 112
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Mechanochemistry For Solid-state Syntheses And Catalysis

Restrepo, David 01 January 2013 (has links)
Traditional methods of synthesizing inorganic materials, such as hydrothermal, sol-gel, calcination and grinding steps, can typically require use of high temperatures, expensive precursors or use of solvents. Because of the energy-intensive nature or environmental impact these techniques, there is a push, especially from an industrial perspective, to move towards greener approaches. Mechanochemistry is a solvent-free alternative technique that can be used to synthesize a variety of materials under ambient conditions. Due to this, there is an increase in attention towards the use of this approach in both solid-state inorganic and organic chemistry. This dissertation reports the mechanochemical synthesis of a few inorganic materials without the need of using high temperatures or solvents. Additionally, examples are presented in which mechanochemistry is used in conjunction with a secondary technique. This mechanical activation of the precursors lead to a decrease in calcination temperature and reactions times, as well as alteration of properties or unique reaction products. The synthesis of kaolinite, vanadia nanostructures, and spinels were carried out in this fashion. Mechanical activation of the precursors allowed for reduced hydrothermal treatment times in case of both kaolinite and vanadia nanostructures and the spinels are calcined at lower temperature for shorter periods of time. In addition, we report alternative template agents than previously reported for the formation of vanadia nanotubes, and report the formation of nanorods. Choosing the appropriate amine template can alter the structure and size of the material. Isomorphously substituted mixed oxides, kaolinite and spinels (MgAl2O4 and ZnAl2O4) were synthesized through a mechanically assisted process. Kaolinites are treated hydrothermally iv for 1 week at 250 ºC to produce an X-ray pure crystalline material. The spinels undergo calcination as low as 500 ºC to produce a nanocrystalline material. Rare-earth metals and transition metals were used as the substitutional atom. The substituted kaolinites exhibit strong order along the c axis, but less ordering along the a and b axes. Trivalent chromium and trivalent rare-earth metals, such as La, Ce, Pr, Nd, Eu, Gd, Ho, and Er, are used to replace aluminum in the structure. Likewise, divalent and trivalent transition, such as Mn, Ni, Cu and Cr, are used as the substitutional atoms in MgAl2O4 and ZnAl2O4. Cathodoluminescence studies on the substituted Spinel structure show that Mn 2+ ions can occupy both the tetrahedral or octahedral holes to give a green and red emission, respectively. On the other hand, Cr3+ ions only occupy the octahedral holes to yield a red emission, similar to that in ruby. These isomorphously substituted materials may have potential applications in catalysis or glaze materials in ceramics. Oxidized graphite, an alternative to graphite oxide and graphene, can be synthesized rapidly by mechanochemical means. Grinding urea hydrogen peroxide adduct with graphite without the need of a solvent produces a product with an oxygen content of 5-15 wt%. The byproducts of this reaction are urea and water. This material is oxidized along the edges of the sheets, allowing it to be hydrophilic while retaining the conductivity. The material can suspend in water and processing allows for films of resistivities between 50 Ω cm-2 and 10 kΩ cm-2 . It was determined that the edges are fully oxidized to yield –COOH groups. This process offers a scalable, environmentally benign route to large quantities of oxidized graphite. An alternative method for the synthesis of nanostructured vanadia is reported. This process involves mechanical grinding of vanadium pentoxide, V2O5, with an amine template, v such as diphenylamine, theophylline, rhodamine 6G and rhodamine, prior to hydrothermal treatment. This allows for the synthesis of VOx nanotubes and nanorods dependent on which template is used. Diphenylamine, theophylline, and rhodamine B produce nanorods. Use of rhodamine 6G produces asymmetric VOx nanorods. In addition to the mixed metals oxides mentioned above, sodium and calcium tantalates are synthesized mechanically. This route does not require the need of elevated temperatures or expensive and hazardous materials. X-ray diffraction analysis of NaTaO3, Ca2Ta2O7, Ca4Ta2O9 and CaTa2O6 shows that these are the only phases detected after 4 h, 10 h, 27 h and 10 h of milling, respectively. During the synthesis of Ca2Ta2O7, an intermediate phase, Ca4Ta2O9, forms within 1 h, which reacts after 5 h to form the desired product. Reference Intensity Ratio analysis shows that the material synthesized mechanically is nanocrystalline Ca2Ta2O7. Nanocrystalline ZrSi2 can also be obtained through mechanochemical synthesis. This method allows for size control and results in crystallites ranging from 9 to 30 nm. Dilution with CaCl2 enables the size control process. A linear relationship exists between the concentration of CaCl2 and the crystallite size. Contrary to a typical self-propagating metathesis reaction, this process does not allow for self-propagation and requires continuous input of mechanical energy to continue. However, this method allows for non-passivated nanoparticles of ZrSi2, which can be incorporated into composites as a reinforcement material for several applications. Hard and ultra-compressible borides, such as ReB2 and OsB2, can be synthesized mechanically. The traditional synthesis of ReB2 requires excess boron due to treatment at high temperatures. This can lead to amorphous boron aggregating at the grain boundaries, which in vi turn, this would degrade the properties of the material. The mechanochemical approach requires mechanical treatment of Re and B powders in stoichiometric quantities for 80 h. Mechanical synthesis of OsB2 powders requires a 1:3 ratio of Os and B powders. After 12 h of milling time, h-OsB2 begins to form, and is the major phase present after 18 h. The lattice parameters corresponding to the hexagonal OsB2 were determined to be a = b = 2.9047 Å, c = 7.4500 Å, α = β = 90º, γ = 120º. Treatment of the OsB2 powder at 1050 ºC under vacuum for 6 days did not induce a phase change, suggesting the hexagonal phase is very stable. Mechanocatalysis of the depolymerization of cellulose and hydrogenation of olefins over BN are reported as well. Heterogeneous catalysis is difficult to apply to solids, such as cellulose. However, mechanical grinding of kaolin and cellulose allows for the catalysis to occur in the solid state. This process allows for a variety of different biomasses to be used as feedstock without inhibition. Kaolinite was found to be the best acid catalyst due to high surface acidity and its layered structure, allowing for up to 84% conversion of the cellulose to water-soluble compounds. This process allows for reduction of waste, insensitivity of feedstock, multiple product pathways and scalability. Hydrogenation reactions are carried out using transition-metals catalysts. These metals have desirable catalytic properties not seen in main group elements, but there is growing concern over their use. A metal-free heterogeneous hydrogenation catalyst based on frustrated Lewis pairs would significantly reduce the health, environmental, and economic concerns associated with these metal-based catalysts. We report the first metal-free heterogeneous hydrogenation catalyst. Hydrogenation of trans-cinnamic acid is carried out over defect-laden h-BN. The vii reactor we use is designed to maximize the defects produced in BN sheets. The introduction of defects in BN creates frustrated Lewis pairs. DFT calculations show that the carbon double bond is weakened over boron substitution for nitrogen sites, vacancies of both boron and nitrogen, and Stone-Wales defects. A new method for crystalline germanium deposition occurring at lower temperatures (210-260 ºC) is reported. This method involves mechanical treatment of the precursors to reduce the particle size. A ground mixture of Ge and CuI are heated under vacuum to synthesize GeI2. In situ disproportionation of this compound at 210 ºC allows for the deposition of polycrystalline Ge films onto a both glass and polymer substrates. The rate of deposition is found to be 25 ng min-1 . The byproducts of this process are GeI2, GeI4 and Cu3Ge, which are valuable precursors for the synthesis of germanium nanostructures and organogermanium compounds. Mechanochemistry is also utilized for the synthesis of trisubstituted pnictides. Mechanochemical treatment of bromobenzene with either Na3Sb or Na3Bi allows for the formation of triphenylstibine or triphenylbismuthine, respectively. The synthesis of the alkali metals pnictide precursors is reported as well. The synthesis of triphenylstibine produces SbPh3 as the major product from the reaction. The synthesis of triphenylbismuthine produces more Wurtz-type coupling products, which are due to the BiPh3 acting as a catalyst. Tributyl and triphenyl analogues are reported as well. The trialkylated analogues for both Sb and Bi produce more Wurtz type coupling products. This would allow for a more cost effective and scalable, alternative methods than what is currently in use today
612

High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications

Alibakhshikenari, M., Virdee, B.S., Salekzamankhani, S., Aïssa, S., Soin, N., Fishlock, S.J., Althuwayb, A.A., Abd-Alhameed, Raed, Huynen, I., McLaughlin, J.A., Falcone, F., Limiti, E. 02 November 2021 (has links)
Yes / This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2 × 3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 μm for operation across 0.19-0.20 THz. The dimensions of the array were 20 × 13.5 × 0.125 mm3. Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits. / Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE) under Grant RTI2018-095499-B-C31, in part by the Innovation Programme under Grant H2020-MSCA-ITN-2016 SECRET-722424, and in part by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/E022936/1.
613

Low Energy Photon Detection

Guo, Tianyi 01 January 2023 (has links) (PDF)
Detecting long wave infrared (LWIR) light at room temperature has posed a persistent challenge due to the low energy of photons. The pursuit of an affordable, high-performance LWIR camera capable of room temperature detection has spanned several decades. In the realm of contemporary LWIR detectors, they can be broadly classified into two categories: cooled and uncooled detectors. Cooled detectors, such as MCT detectors, excel in terms of high detectivity and fast response times. However, their reliance on cryogenic cooling significantly escalates their cost and restricts their practical applications. In contrast, uncooled detectors, exemplified by microbolometers, are capable of functioning at room temperature and come at a relatively lower cost. Nonetheless, they exhibit somewhat lower detectivity and slower response times. Within the scope of this work, I will showcase two innovative approaches aimed at advancing the next generation of LWIR detectors. These approaches are designed to offer high detectivity, swift response times, and room temperature operation. The first approach involves harnessing Dirac plasmon and the Seebeck effect in graphene to create a photo-thermoelectric detector. In addition, I will introduce the application of scanning near-field microscopy for revealing the plasmons generated in graphene, employing both imaging and spectroscopy techniques. The second approach entails the use of an oscillating circuit integrated with phase change materials and the modulation of frequency induced by infrared illumination to achieve LWIR detection. Finally, I will present the progress made in integrating graphene-based detectors in this work onto readout circuits to enable the development of dense pixel focal plane array.
614

Effect of contribution of graphene-based filler in cataphoretic organic protective coatings

Calovi, Massimo 13 January 2021 (has links)
The thesis aims to illustrate and highlight the potential of graphene-based fillers in reinforcing organic coatings deposited by cataphoresis. Thanks to particular surface modification processes of the graphene flakes, these have been properly distributed within the polymer matrix, providing the composite coating with remarkable protective performance. The optimization of the deposition process parameters, as well as the amount of filler, also allowed to improve the mechanical and conductivity properties of the cataphoretic matrix, suggesting the possibility of realizing multifunctional coatings. Finally, these ’smart’ coatings were made by combining two deposition techniques, creating two layers with distinct purposes, containing different types of graphene-based fillers. The cataphoretic primer provided the substrate with high corrosion protection, while the spray top coat possessed high properties of electrical conductivity and resistance to abrasion phenomena. Ultimately, graphene has proven to be an excellent resource as a reinforcing filler in multifunctional organic coatings.
615

ELECTRON DYNAMICS IN PERIODICALLY STRAINED GRAPHENE

Mahmud, Md Tareq January 2022 (has links)
No description available.
616

Layer-by-Layer Assembly of Carbon Nanomaterials Containing Thin Film Nanocomposite Membranes for Water Desalination and Organic Solvent Nanofiltration Applications

Abbaszadeh, Mahsa 25 November 2020 (has links)
The application of membranes in liquid and gas separation is attractive because of their energy efficiency. Synthesis of membranes with well-defined nanostructure is necessary to achieve highly permeability and selectivity for separation processes. Recently, carbon nanomaterials such as graphene oxide nanoplatelets (GONPs) and carbon nanodots (CNDs) have emerged as an interesting class of nanomaterials due to their unique properties and tailorable functionalities. Incorporation of these nanomaterials in the membranes has been shown to improve membrane selectivity, mechanical robustness, and chemical stability. This dissertation elaborates on developing CNDs or GONPs embedded thin film composite (TFC) membranes using layer-by-layer (LbL) synthesis technique. Regarding the water desalination applications, GONPs were used to enhance the TFC membranes’ selectivity, chlorine resistant properties, and surface hydrophilicity. Incorporation of GONPs in the polyamide layer via LbL method resulted in an increase of surface hydrophilicity and salt rejection properties. Upon exposure to chlorine, GONPs embedded membranes retained salt rejection performance better than the pristine membranes (without GONPs). The LbL assembly was used to synthesize CNDs based TFC membranes for organic solvent nanofiltration (OSN) applications. Using the LbL framework, amineunctionalized CNDs were covalently crosslinked with trimesoyl chloride monomer to obtain nanoscale membranes. The synthesized membranes manifested high selectivity (up to 90%) when tested for dye molecules such as brilliant blue and disperse red in methanol. As the CNDs synthesized here are fluorescent under UV light, the resultant film is also fluorescent. This property can be harnessed for diagnostic purposes, such as tracking mechanical failure and fouling of the membranes. Based on the results, it can be concluded that the incorporation of carbon nanomaterials in the polymeric membranes has enhanced the hydrophilicity, mechanical stability, and chlorine resistant properties of the membranes. Overall, the LbL platform can be considered as a modular method in embedding nanoparticles in TFC membranes.
617

Low-cost adsorbents for water purification

Samaraweera, Hasara Dilum 30 April 2021 (has links)
Heavy metals, oxyanions (NO3-, PO4-), pharmaceuticals, and dyes in aquatic environments are inevitable economic and health concerns. Ingestion of these contaminants, even in trace amounts, causes long and short-term serious threats to human health. Conventional pollutant mitigation strategies can be costly or ineffective. Due to high efficiency, simplicity, low price, adsorbent reuse, and pollutant (e.g., phosphates) recovery, adsorption has been widely used for wastewater purification. Many efficient, environmentally compatible, and cost-effective sorbents have been successfully applied in environmental remediation. Chapter I is about characterization of graphene-coated pinewood biochar hybrids and evaluation of their copper removal performances. Here, we synthesized three types of pinewood biochar-graphene composites consisting of three different graphene precursors and compared their aqueous Cu2+ removal performances against raw pinewood biochar. To the best of our knowledge, no previous work has characterized the copper decontamination by graphene-biochar hybrids. Chapter II is about thermally- and chemically-treated lignite adsorbents for phosphate remediation. We engineered a cost efficient lignite system with co-precipitated Ca2+/Mg2+ followed by pyrolysis at 600 ⁰C to remediate aqueous phosphates. Micro-sized surface deposited oxide/hydroxide/carbonate particles promoted phosphate uptake of Ca2+/Mg2+-modified-lignite by 31 and 72 times, compared to thermally treated lignite (w/o a chemical treatment) and the raw lignite, respectively. The exhausted adsorbent can act as a slow-release fertilizer, which is comparable with commercial phosphate fertilizers. Chapter III is about synthesis of activated lignite [A-L], Ca2+-modified lignite [Ca-L], and Fe3O4 nanoparticle-loaded activated lignite (Fe3O4-A-L) for phosphate remediation. Even though A-L has a very high surface area (2854 m2/g), it did not achieve much phosphate sorption. Ca-L phosphate uptake was highest due to the high concentrations of surface deposited CaCO3, CaO, and Ca(OH)2. A pH-independent (from pH 5 to 9) phosphate removal was reported by highly basic Ca-L. However, the Ca2+ leaching was highest at pH 5. Precipitation of Ca2+ phosphates/hydrophosphates is the major phosphate removal mechanism of Ca-L. Fe3O4 and Fe2O3 sites of Fe3O4-A-L enhanced phosphate adsorption capacity, 8-fold versus A-L (67.6 mg/g vs 8.0 mg/g at 25 ºC). Fe3O4-A-L remediated phosphates via inner-sphere surface complexation and precipitation.
618

Synthesis and Characterization of Graphene Oxide/Sulfur Nanocomposite for Lithium-Ion Batteries

Blake, Aaron Joseph 08 November 2013 (has links)
No description available.
619

Study of interfacial interaction effects in different systems including polymer nanocomposites and protein adsorption

Zhang, Yan January 2013 (has links)
No description available.
620

Asymmetric Capacitor Based on Vanadium Dioxide/Graphene/Nickle and Carbon Nanotube Electrode

Xiao, Wanyao 10 June 2014 (has links)
No description available.

Page generated in 0.0671 seconds