Spelling suggestions: "subject:"glendale"" "subject:"aziendale""
1 |
The aging of a greenbelt town a planning history of Greendale, Wisconsin /Eden, Joseph A. January 1981 (has links)
Thesis (M.A.)--University of Wisconsin--Madison, 1981. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 110-117).
|
2 |
A report to the Wisconsin State Board of Health on the proposed water works for Greendale, WisconsinBecker, Elmer William. January 1937 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1937. / Typescript. eContent provider-neutral record in process. Description based on print version record.
|
3 |
Greendale a study of a resettlement community /Marshall, Douglas G. January 1943 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1943. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 93-96).
|
4 |
The Structural and Geomorphic Development of Active Collisional Orogens, from Single Earthquake to Million Year Timescales, Timor Leste and New ZealandDuffy, Brendan Gilbert January 2012 (has links)
The structure and geomorphology of active orogens evolves on time scales ranging from a single earthquake to millions of years of tectonic deformation. Analysis of crustal deformation using new and established remote sensing techniques, and integration of these data with field mapping, geochronology and the sedimentary record, create new opportunities to understand orogenic evolution over these timescales. Timor Leste (East Timor) lies on the northern collisional boundary between continental crust from the Australian Plate and the Banda volcanic arc. GPS studies have indicated that the island of Timor is actively shortening. Field mapping and fault kinematic analysis of an emergent Pliocene marine sequence identifies gentle folding, overprinted by a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of orogen-parallel extension. Folding of Pliocene rocks in Timor may represent an early episode of contraction but the overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, during and after initial uplift of the orogen. Sedimentological, geochemical and Nd isotope data indicate that the island of Timor was emergent and shedding terrigenous sediment into carbonate basins prior to 4.5 Ma. Synorogenic tectonic and sedimentary phases initiated almost synchronously across much of Timor Leste and <2 Myr before similar events in West Timor. An increase in plate coupling along this obliquely converging boundary, due to subduction of an outlying continental plateau at the Banda Trench, is proposed as a mechanism for uplift that accounts for orogen-parallel extension and early uplift of Timor Leste. Rapid bathymetric changes around Timor are likely to have played an important role in evolution of the Indonesian Seaway.
The 2010 Mw 7.1 Darfield (Canterbury) earthquake in New Zealand was complex, involving multiple faults with strike-slip, reverse and normal displacements. Multi-temporal cadastral surveying and airborne light detection and ranging (LiDAR) surveys allowed surface deformation at the junction of three faults to be analyzed in this study in unprecedented detail. A nested, localized restraining stepover with contractional bulging was identified in an area with the overall fault structure of a releasing bend, highlighting the surface complexities that may develop in fault interaction zones during a single earthquake sequence. The earthquake also caused river avulsion and flooding in this area. Geomorphic investigations of these rivers prior to the earthquake identify plausible precursory patterns, including channel migration and narrowing. Comparison of the pre and post-earthquake geomorphology of the fault rupture also suggests that a subtle scarp or groove was present along much of the trace prior to the Darfield earthquake. Hydrogeology and well logs support a hypothesis of extended slip history and suggests that that the Selwyn River fan may be infilling a graben that has accumulated late Quaternary vertical slip of <30 m. Investigating fault behavior, geomorphic and sedimentary responses over a multitude of time-scales and at different study sites provides insights into fault interactions and orogenesis during single earthquakes and over millions of years of plate boundary deformation.
|
5 |
Patterns of Crustal Deformation Resulting from the 2010 Earthquake Sequence in Christchurch, New ZealandClaridge, Jonathan William Roy January 2012 (has links)
The Mw 7.1 Darfield earthquake generated a ~30 km long surface rupture on the Greendale Fault and significant surface deformation related to related blind faults on a previously unrecognized fault system beneath the Canterbury Plains. This earthquake provided the opportunity for research into the patterns and mechanisms of co-seismic and post-seismic crustal deformation. In this thesis I use multiple across-fault EDM surveys, logic trees, surface investigations and deformation feature mapping, seismic reflection surveying, and survey mark (cadastral) re-occupation using GPS to quantify surface displacements at a variety of temporal and spatial scales. My field mapping investigations identified shaking and crustal displacement-induced surface deformation features south and southwest of Christchurch and in the vicinity of the projected surface traces of the Hororata Blind and Charing Cross Faults. The data are consistent with the high peak ground accelerations and broad surface warping due to underlying reverse faulting on the Hororata Blind Fault and Charing Cross Fault. I measured varying amounts of post-seismic displacement at four of five locations that crossed the Greendale Fault. None of the data showed evidence for localized dextral creep on the Greendale Fault surface trace, consistent with other studies showing only minimal regional post-seismic deformation. Instead, the post-seismic deformation field suggests an apparent westward translation of northern parts of the across-fault surveys relative to the southern parts of the surveys that I attribute to post-mainshock creep on blind thrusts and/or other unidentified structures. The seismic surveys identified a deformation zone in the gravels that we attribute to the Hororata Blind Fault but the Charing Cross fault was not able to be identified on the survey. Cadastral re-surveys indicate a deformation field consistent with previously published geodetic data. We use this deformation with regional strain rates to estimate earthquake recurrence intervals of ~7000 to > 14,000 yrs on the Hororata Blind and Charing Cross Faults.
|
6 |
Analogue modelling of strike-slip surface ruptures: Implications for Greendale Fault mechanics and paleoseismologySasnett, Peri Jordan January 2013 (has links)
Analogue modelling of strike-slip faulting provides insight into the development and behaviour of surface ruptures with accumulated slip, with relevance for understanding how information recorded in paleoseismic trenches relates to the earthquake behaviour of active faults. Patterns of surface deformation were investigated in analogue experiments using cohesive and non-cohesive granular materials above planar strike-slip basement faults. Surface deformation during the experiments was monitored by 3D PIV (particle image velocimetry) and 2D time lapse photography. Analysis focused on fault zone morphology and development, as well as the relationship of the models to surface deformation observed at the Greendale Fault that resulted from the 2010 Darfield earthquake.
Complex rupture patterns with similar characteristics to the Greendale Fault (e.g. en echelon fractures, Riedel shears, pop-up structures, etc.) can be generated by a simple fault plane of uniform dip, slip, and frictional properties. The specific structures and the style of their development are determined by the properties of the overburden and the nature of the material surface. The width of the zone of distributed deformation correlates closely with sediment thickness, while the width of discrete fracturing is controlled by the material properties as well as the thickness of the overburden. The overall deformation zone width increases with the growth of initial, oblique fractures and subsequently narrows with time as strain localizes onto discrete fractures parallel to the underlying basement fault.
Mapping the evolution of fracture patterns with progressive strain reveals that Riedel shears, striking at 90-120° (underlying fault strike = 90°) are more frequently reactivated during multiple earthquake cycles, and are thus most likely to provide reliable paleoseismic records. This will help identify suitable locations for paleoseismic trenches and interpret trench records on the Greendale Fault and other active, strike-slip faults in analogous geologic settings. These results also highlight the tendency of trenching studies on faults of this type to underestimate the number and displacement of previous ruptures, which potentially leads to an underestimate of the magnitude potential and recurrence interval of paleoearthquakes.
|
7 |
To Make America Over: The Greenbelt Towns of the New DealTurner, Julie D. 20 April 2010 (has links)
No description available.
|
Page generated in 0.0296 seconds