1 |
Contributions to converters in single phase distributed photovoltaic systemsAl-Omari, Ali Hussein Abduljabbar January 2018 (has links)
This thesis contributes to improve the photovoltaic Distributed Generation (DG) systems by proposing three novel methods to the system. On DC conversion side, a new integrated magnetic structure for interleaved converter and a new method to calculate the eddy current and hysteresis losses in the magnetic core were proposed. On inversion side, A new synchronisation method for grid tie inverters was suggested. The technique is using the Recursive Discrete Fourier Transform (RDFT) to find fundamental in grid waveform. On the DC converter side, the benefits of the new structure is to produce magnetic flux that alternate in the core across both directions of the BH curve. The advantages of alternating magnetic flux are, to increase the Root Mean Square (RMS) value of produced current with respect to core volume that lead to reduce the core size and reducing losses by using high permeability material. Furthermore, the proposed structure led to reduce the number of magnetic components which helped to improve the efficiency. The converter was tested and evaluated were the results show that the topology is able to produce high gain and it shows that the new interleaved structure is efficient. A new method to calculate the eddy current loss was proposed, where the flux waveform in the core was analysed to its original frequency component. Each of the components were utilized individually to find the loss. The effect of changing the duty cycle of the converter was taken into consideration on the total eddy current loss, as it will effect on the total harmonics content in the flux waveform. On the inverter side, due to recent developments combined with the increasing power demand by single phase non-linear loads where voltage spikes, harmonics and DC component were impacted the electric grid quality. These effects can likewise make the synchronisation process a challenge, where filters or Digital Signal processing (DSP) analysers are required to acquire the fundamental component as a consequence to the waveform deformation. A new linear approximation with RDFT is presented in this thesis for grid tie inverters. The new method provides a computation reduction as well as high accuracy in tracking the fundamental frequency in a distorted grid during synchronisation. The method accuracy was proved mathematically and simulated with different input signals. Error in magnitude and frequency measurement were measured, presented and compared with other research in order to verify the proposed method.
|
2 |
Fuel cell power conditioning multiphase converter for 1400 VDC megawatts stacksKhlid, Ben Hamad January 2019 (has links)
Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2019 / Energy systems based on fossil fuel have demonstrated their abilities to permit economic development. However, with the fast exhaustion of this energy source, the expansion of the world energy demand and concerns over global warming, new energy systems dependent on renewable and other sustainable energy are gaining more interests. It is a fact that future development in the energy sector is founded on the utilisation of renewable and sustainable energy sources. These energy sources can enable the world to meet the double targets of diminishing greenhouse gas emissions and ensuring reliable and cost-effective energy supply. Fuel cells are one of the advanced clean energy technologies to substitute power generation systems based on fossil fuel. They are viewed as reliable and efficient technologies to operate either tied or non-tied to the grid to power applications ranging from domestic, commercial to industrial. Multiple fuel cell stacks can be associated in series and parallel to obtain a fuel cell system with high power up to megawatts. The connection of megawatts fuel cell systems to a utility grid requires that the power condition unit serving as the interface between the fuel cell plant and the grid operates accordingly. Different power conditioning unit topologies can be adopted, this study considers a multilevel inverter.
Multilevel inverters are getting more popularity and attractiveness as compared to conventional inverters in high voltage and high-power applications. These inverters are suitable for harmonic mitigation in high-power applications whereby switching devices are unable to function at high switching frequencies. For a given application, the choice of appropriate multilevel topology and its control scheme are not defined and depend on various engineering compromises, however, the most developed multilevel inverter topologies include the Diode Clamped, the Flying Capacitor and the Cascade Full Bridge inverters. On the other hand, a multilevel inverter can be either a three or a five, or a nine level, however, this research focuses on the three-level diode clamped inverters.
The aim of this thesis is to model and control a three-level diode clamped inverter for the grid connection of a megawatt fuel cell stack. Besides the grid, the system consists of a 1.54 MW operating at 1400 V DC proton exchange membrane fuel cell stack, a 1.26 MW three-level diode clamped inverter with a nominal voltage of 600 V and an LCL filter which is designed to reduce harmonics and meet the standards such as IEEE 519 and IEC 61000-3-6. The inverter control scheme comprises voltage and current regulators to provide a good power factor and satisfy synchronisation requirements with the grid. The frequency and phase are synchronised with those of the grid through a phase locked loop. The modelling and simulation are performed using Matlab/Simulink. The results show good performance of the developed system with a low total harmonic distortion of about 0.35% for the voltage and 0.19% for the current.
|
Page generated in 0.0989 seconds