• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solar-based Single-stage High-efficiency Grid-connected Inverter

Tian, Feng 01 January 2005 (has links)
Renewable energy source plays an important role in the energy cogeneration and distribution. Traditional solar-based inverter system is two stages in cascaded, which has a simpler controller but low efficiency. A new solar-based single-stage grid-connected inverter system can achieve higher efficiency by reducing the power semiconductor switching loss and output stable and synchronized sinusoid current into the utility grid. Controlled by the digital signal processor, the inverter can also draw maximum power from the solar array, thereby maximizing the utilization of the solar array. In Chapter 1, a comparison between the traditional two-stage inverter and the single-stage inverter is made. To increase the ability of power processing and enhance the efficiency further, a full-bridge topology is chosen, which applies the phase-shift technique to achieve zero-voltage transition. In Chapter 2, average-mode and switch-mode Pspice simulations are applied. All the features of the inverter system are verified, such as stability, zero voltage transition and feed-forward compensation, etc. All these simulation results provide useful design tips for prototyping. In Chapter 3, a phase-shift controller is designed based on UCC3895. Also, a detailed design procedure is given, including key components selection, transformer and inductor design and driver circuits design. In Chapter 4, experimental results of a prototype DC/DC converter are presented and analyzed. By optimization of the circuit, the problems of the prototype are solved and the prototype is working stably. The thesis' conclusion is given in Chapter 5.

Page generated in 0.0958 seconds