1 |
The significance of episodic recharge in the Wheatbelt of Western Australia /Lewis, Marjorie Fay. January 2000 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Civil and Environmental Engineering, 2001. / Typescript (photocopy). Includes bibliographical references (v. 1, leaves 359-369).
|
2 |
The implications of ground-water in land policy development and in current farm resource adjustment in a semi-arid regionDavis, Kinchloe Carmack, January 1962 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1962. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 200-209).
|
3 |
Salinity of irrigation water in the Philippi farming area of the cape flats, Cape Town, South AfricaAza-Gnandji Cocou Davis Ruben January 2011 (has links)
<p>This research investigated the nature, source and the spatial variation of the salinity of the water used for irrigation in the urban farming area of Philippi, which lies in the Cape Flats region of the Cape Town Metropolitan Area, South Africa. The irrigation water is mainly drawn from the Cape Flats aquifer, and pumped into ponds for eventual crop irrigation. Water samples were collected in summer and in winter from fifteen selected sites using standard water sampling procedures. Each site consisted of one borehole and one pond. The samples were routinely analyzed for salinity levels, and concentrations of major and minor ions. From the same boreholes and ponds, water was sampled in summer for isotope analysis to assess effects of evaporation on the water quality and salinity. Descriptive statistics were used to display the variation in range of specific ions in order to compare them with the recommended ranges. Geographical Information Systems analysis described the spatial distribution of the salinity across the study area, and hydrogeochemical analysis characterized the various waters and detected similarities between the water samples in the study area and other waters found in the Cape Flats region. In addition, the US salinity diagram classification of irrigation water developed by Richards (1954) was used to assess the current suitability of groundwater and pond water samples collected during the entire sampling period for irrigation activities. The research indicated that the concentrations of some ions such as chloride, nitrate, potassium and sodium exceeded in places in the study area, the target range values set by the Department of Water Affairs and Forestry (DWAF, 1996) and the Food and Agriculture Organization (Ayers and Westcot, 1985). It revealed that borehole and pond water were mostly brackish across the area regarding their total dissolved salts content, and fresh water was only found in the middle part of the study area. The research found that sea water does not intrude into the aquifer of the study area, and the accumulation of salts in groundwater and soil in the study area is mainly due to the agricultural activities and partially due to the natural movement of water through the geological formation of the Cape Flats region. The conceptual model of the occurrence of the salinization process supported these findings. From this investigation it is understood that the groundwater and pond water in the study area were generally suitable for irrigation purposes but they have to be used with caution as the vegetables are classified as sensitive and moderately sensitive to salt according to DWAF Irrigation water guidelines (1996). The quality of these waters was mainly affected by the land use activities.</p>
|
4 |
Salinity of irrigation water in the Philippi farming area of the cape flats, Cape Town, South AfricaAza-Gnandji Cocou Davis Ruben January 2011 (has links)
<p>This research investigated the nature, source and the spatial variation of the salinity of the water used for irrigation in the urban farming area of Philippi, which lies in the Cape Flats region of the Cape Town Metropolitan Area, South Africa. The irrigation water is mainly drawn from the Cape Flats aquifer, and pumped into ponds for eventual crop irrigation. Water samples were collected in summer and in winter from fifteen selected sites using standard water sampling procedures. Each site consisted of one borehole and one pond. The samples were routinely analyzed for salinity levels, and concentrations of major and minor ions. From the same boreholes and ponds, water was sampled in summer for isotope analysis to assess effects of evaporation on the water quality and salinity. Descriptive statistics were used to display the variation in range of specific ions in order to compare them with the recommended ranges. Geographical Information Systems analysis described the spatial distribution of the salinity across the study area, and hydrogeochemical analysis characterized the various waters and detected similarities between the water samples in the study area and other waters found in the Cape Flats region. In addition, the US salinity diagram classification of irrigation water developed by Richards (1954) was used to assess the current suitability of groundwater and pond water samples collected during the entire sampling period for irrigation activities. The research indicated that the concentrations of some ions such as chloride, nitrate, potassium and sodium exceeded in places in the study area, the target range values set by the Department of Water Affairs and Forestry (DWAF, 1996) and the Food and Agriculture Organization (Ayers and Westcot, 1985). It revealed that borehole and pond water were mostly brackish across the area regarding their total dissolved salts content, and fresh water was only found in the middle part of the study area. The research found that sea water does not intrude into the aquifer of the study area, and the accumulation of salts in groundwater and soil in the study area is mainly due to the agricultural activities and partially due to the natural movement of water through the geological formation of the Cape Flats region. The conceptual model of the occurrence of the salinization process supported these findings. From this investigation it is understood that the groundwater and pond water in the study area were generally suitable for irrigation purposes but they have to be used with caution as the vegetables are classified as sensitive and moderately sensitive to salt according to DWAF Irrigation water guidelines (1996). The quality of these waters was mainly affected by the land use activities.</p>
|
5 |
The rural and agricultural value of groundwater as an economic resource in the Limpopo regionMahumani, Brian Kudzai 03 1900 (has links)
Thesis (MScAgric (Agricultural Economics)--University of Stellenbosch, 2009. / This thesis constitutes a socio-economic study that centres on determining the economic value of groundwater in rural and agricultural uses. Limpopo Water Management Area (WMA1) and Luvuvhu/Letaba Water Management Area (WMA2) were studied in this thesis. In WMA1 table potato irrigation in the Polokwane agricultural area was studied, while Gaphago, Leokaneng, Kanana and Mohlajeng villages were studied for rural household groundwater use. In WMA2 tomato irrigation in the Mooketsi agricultural area was studied, while Lemondokop, Sereni and Hamashamba villages were studied for rural household groundwater use.
Scoping field trips to the study area as well as secondary data revealed that groundwater was the dominant water source in all these selected study epicentres. In the Polokwane agricultural area, the farms typically relied on numerous boreholes. In the Mooketsi commercial farming area, groundwater was the dominant water source for most years, except when flush floods replenished farm dams. When flush floods occurred, farmers partially substituted surface water for groundwater because of economic reasons.
This study determined the economic value of groundwater in two use sectors. First, determining the utility value of groundwater in selected rural households using the contingent valuation method. Utility value was defined by Dupuit (1844) and Marshall (1879) as the maximum sacrifice expressed in money terms which each consumer would be willing to make in order to acquire an object. Open-ended questions were used to determine willingness to pay during contingent household groundwater valuation. The overall mean willingness to pay for satisfactory household groundwater for the study area was R2.28 per kilolitre of groundwater.
|
6 |
Estimation of Root Zone Soil Hydraulic Properties by Inversion of a Crop Model using Ground or Microwave Remote Sensing ObservationsSreelash, K January 2014 (has links) (PDF)
Good estimates of soil hydraulic parameters and their distribution in a catchment is essential for crop and hydrological models. Measurements of soil properties by experimental methods are expensive and often time consuming, and in order to account for spatial variability of these parameters in the catchment, it becomes necessary to conduct large number of measurements.
Estimation of soil parameters by inverse modelling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise for heterogeneous layered soils. Although extensive soil data is becoming more and more available at various scales in the form of digital soil maps there is still a large gap between this available information and the input parameters needed for hydrological models.
Inverse modeling has been extensively used but the spatial variability of the parameters and insufficient data sets restrict its applicability at the catchment scale. Use of remote sensed soil moisture data to estimate soil properties using the inverse modeling approach received attention
in recent years but yielded only an estimate of the surface soil properties. However, in
multilayered and heterogeneous soil systems the estimation of soil properties of different layers yielded poor results due to uncertainties in simulating root zone soil moisture from remote sensed surface soil moisture. Surface soil properties can be estimated by inverse approach using
surface soil moisture data retrieved from remote sensing data. Since soil moisture retrieved from remote sensing is representative of the top 5 cm only, inversion of models using surface soil
moisture cannot give good estimates of soil properties of deeper layers. Crop variables like biomass and leaf area index are sensitive to the deeper layer soil properties. The main focus of this study is to develop a methodology of estimation of root zone soil hydraulic properties in
heterogeneous soils by crop model based inversion techniques. Further the usefulness of the radar soil moisture and leaf area index in retrieving soil hydraulic properties using the develop approach is be tested in different soil and crop combinations.
A brief introduction about the soil hydraulic properties and their importance in agro-hydrological model is discussed in Chapter 1. Soil water retention parameters are explained in detail in this chapter. A detailed review of the literature is presented in chapter 2 to establish the state of art on the following: (i) estimation of soil hydraulic properties, (ii) role of crop models in estimating
soil hydraulic properties, (iii) retrieval of surface soil moisture using water cloud model from SAR data, (iv) retrieval of leaf area index from SAR (synthetic aperture radar) data and (v) modeling of root zone soil moisture and potential recharge.
The thesis proposes a methodology for estimating the root zone soil hydraulic properties viz. field capacity, wilting point and soil thickness. To test the methodology developed in this thesis
for estimating the soil hydraulic properties and their uncertainty, three synthetic experiments were conducted by inversion of STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard) model for maize crop using the GLUE (Generalized Likelihood Uncertainty Estimation) approach. The estimability of soil hydraulic properties in a layer-wise heterogeneous soil was examined with several sets of likelihood combinations, using leaf area index, surface
soil moisture and above ground biomass. The robustness of the approach is tested with parameter estimation (model inversion) in two different meteorological conditions. The details of the numerical experiments and the several likelihood and meteorological cases examined are given in Chapter 3. The likelihood combination of leaf area index and surface soil moisture provided
consistently good estimates of soil hydraulic properties for all soil types and different meteorological cases. Relatively wet year provided better estimates of soil hydraulic properties as compared with a dry year.
To validate the approach of estimating root zone soil properties and to test the applicability of the approach in several crops and soil types, field measurements were carried out in the Berambadi
experimental watershed located in the Kabini river basin in south India. The profile soil
measurements were made for every 10 cm upto 1 m depth. Maize, Marigold, Sunflower,
Sorghum and Turmeric crops were monitored during the four year period from 2010 to 2013.
Crop growth parameters viz. leaf area index, above ground biomass, yield, phenological stages and crop management activities were measured/monitored at 10 day frequency for all the five crops in the study area. The details of the field experiments performed, the data collected and the results of the model inversion using the ground measured data are given in Chapter 4. The likelihood combination of leaf area index and surface soil moisture provided consistently lower
root mean square error (1.45 to 2.63 g/g) and uncertainty in the estimation of soil hydraulic properties for all soil crop and meteorological cases. The uncertainty in the estimation of soil hydraulic properties was lower in the likelihood combination of leaf area index and soil moisture. Estimability of depth of root zone showed sensitivity to the rooting depth.
Estimating root zone soil properties at field plot scale using SAR data (incidence angle 24o, wave length 5.3 GHz) of RADARSAT-2 is presented in the Chapter 5. In the first step, an approach of estimating leaf area index from radar vegetation index using the parametric growth curve of leaf
area index and the retrieval of soil moisture using water cloud model are given in Chapter 5. The parameters of the growth curve and the leaf area index are generated using a time series of RADARSAT-2 for two years 2010-2011 and 2011-12 for the crops (maize, marigold, sunflower, sorghum and turmeric) considered in this study. The surface soil moisture is retrieved using the
water cloud model, which is calibrated using the ground measured values of leaf area index and surface soil moisture for different soils and crops in the study area. The calibration and validation of LAI and water cloud models are discussed in this Chapter. Eventually, the retrieved leaf area
index and surface soil moisture from RADARSAT-2 data were used to estimate the soil hydraulic properties and their uncertainty in a similar manner as discussed in Chapter 4 for various crop and soil plots and the results are presented in Chapter 5. The mean and uncertainty in the estimation of soil hydraulic properties using inversion of remote sensing data provided results similar to the estimates from inversion of ground data. The estimates of soil hydraulic
properties compared well (R2 of 0.7 to 0.80 and RMSE of 2.1 to 3.16 g/g) with the physically measured vales of the parameters.
In Chapter 6, root zone soil moisture and potential recharge are modelled using the STICS model and the soil hydraulic parameters estimated using the RADARSAT-2 data. The potential recharge is highly sensitive to the water holding capacity of rooting zone. Variability in the root
zone soil moisture for wet and dry years for different soil types on irrigated and non-irrigated crops were investigated. Potential recharge from different crop and soil types were compared.
The uncertainty in the estimation of potential recharge due to uncertainty in the estimation of field capacity is quantified. The root zone soil moisture modeled by STICS showed good agreement with the measured root zone soil moisture in all crop and soil cases. This was tested for both dry and wet year and provides similar results. The temporal variability of root zone soil
moisture was also modeled well by the STICS model; the model also predicted well the intra-soil variability of soil moisture of root zone. The results of the modeling of root zone soil moisture and potential recharge are presented in Chapter 6. At the end, in Chapter 7, the major conclusions drawn from the various chapters are summarized.
|
Page generated in 0.4211 seconds