• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CAFM Studies of Epitaxial Lateral Overgrowth GaN Films

Kasliwal, Vishal P. 01 January 2007 (has links)
This thesis uses the techniques of atomic force microscopy (AFM) and conductiveAFM (CAFM) to study defect sites on GaN films. In particular, these defect sites demonstrate current leakage under reverse-bias conditions that are detrimental to device fabrication. Two growth techniques that were used to improve this leakage behavior for samples in this study included: epitaxial lateral overgrowth (ELO) and nano-ELO using a Si3N4 film. Both techniques decrease defects such as threading dislocations by controlling the nucleation and growth behavior of the GaN films. The EL0 technique uses a patterned dielectric film to laterally grow micron-wide regions (referred to as 'wings') that minimize dislocation defects. Our CAFM studies indicate that ELO films have no detectable leakage sites in these wing regions; however, between these regions the films have typical leakage site densities seen for standard films on the order of 107cm-3. The nano-ELO technique utilizes a porous Si3N4 film to reduce defects over the entire film, and CAFM data indicate nearly a factor of ten reduction in leakage site densities. The nano-ELO technique is therefore optimal for an overall improvement in film quality, whereas the ELO technique is suitable for device fabrication in patterned regions with optimized film quality.
2

Investigation of sulfate-reducing bacteria growth behavior for the mitigation of microbiologically influenced corrosion (MIC)

Hu, An January 2004 (has links)
No description available.
3

A biocompatible and functional adhesive aminerich coating based on dopamine polymerization

Yang, Ying, Qi, Pengkai, Ding, Yonghui, Maitz, Manfred F., Yang, Zhilu, Tu, Qiufen, Xiong, Kaiqin, Leng, Yang, Huang, Nan 07 January 2020 (has links)
Amine groups physiologically play an important role in regulating the growth behavior of cells and they have technological advantages for the conjugation of biomolecules. In this work, we present a method to deposit a copolymerized coating of dopamine and hexamethylendiamine (HD) (PDAM/HD) rich in amine groups onto a target substrate. This method only consists of a simple dip-coating step of the substrate in an aqueous solution consisting of dopamine and HD. Using the technique of PDAM/HD coating, a high density of amine groups of about 30 nmol cm⁻² was obtained on the target substrate surface. The PDAM/HD coating showed a high cross-linking degree that is robust enough to resist hydrolysis and swelling. As a vascular stent coating, the PDAM/HD presented good adhesion strength to the substrate and resistance to the deformation behavior of compression and expansion of a stent. Meanwhile, the PDAM/HD coating exhibited good biocompatibility and attenuated the tissue response compared with 316L stainless steel (SS). The primary amine groups of the PDAM/HD coating could be used to effectively immobilize biomolecules containing carboxylic groups such as heparin. These data suggested the promising potential of this PDAM/HD coating for application in the surface modification of biomedical devices.

Page generated in 0.0472 seconds