Spelling suggestions: "subject:"gyroscope"" "subject:"gyroscopes""
21 |
Modélisation des effets tournants du pneumatique et des forces decontact pour le bruit de roulement basses fréquences / Modeling the rolling tire and the contact forces for the rolling noise in low frequenciesVu, Trong Dai 18 February 2014 (has links)
Le bruit de roulement contribue fortement au bruit perçu à l'intérieur de l'habitacle des automobiles. Ce bruit a pour origine le contact du pneumatique sur une chaussée rugueuse. En basses fréquences (0-400 Hz), il est transmis dans l'habitacle du véhicule essentiellement par la voie solidienne. La méthode actuelle de prévision de ce bruit chez PSA Peugeot Citroën repose sur une approche mixte calcul-mesure longue, coûteuse et pas suffisamment prédictive. Pour contourner ces limitations, une filière purement numérique est envisagée. Elle demande de modéliser le comportement vibro-acoustique du pneumatique en prenant en compte les effets liés à la rotation et de résoudre le problème de contact avec une chaussée rugueuse. Concernant la modélisation d'un pneumatique en rotation, des formulations des effets tournants d'un solide déformable sont établies en utilisant une approche Arbitrairement Lagrangienne Eulérienne (ALE). Ces formulations sont validées par une application sur un nouveau modèle simplifié du pneumatique. Il s'agit d'un modèle d'anneau circulaire incluant les effets de cisaillement soumis localement à une charge représentative de la masse du véhicule. Un modèle plus complexe d'ensemble monté pneu/roue/cavité intégrant l'ensemble des effets liés à la rotation est également validé par une comparaison avec des essais. Ensuite, le contact avec une chaussée réelle est formulé par différentes approches permettant de réduire le temps de calcul pour une utilisation industrielle. En particulier, le calcul du contact est décomposé en un calcul statique non linéaire suivi d'un calcul dynamique linéaire. La validation du modèle de contact est réalisée par une comparaison calcul/essai. Les résultats sont très satisfaisants / The rolling noise contributes significantly to the noise inside cars. This noise comes from the tire/road contact. In low frequencies (0-400 Hz), it is mainly transmitted into the cabin through structural vibration. The current method used at PSA Peugeot Citroen to predict this noise, is a mixed simulation/experimental approach which is long, expensive and not sufficiently predictive. In order to overcome these difficult, a full numerical approach is considered. It requires modeling the tire vibration by taking into account the rotating effects and the contact with the rough surface. Concerning the model of rotating tire, a formulation of a deformable solid is constructed by using an Arbitrary Lagrangian Eulerian approach (ALE). This formulation is validated by an application on a new simplified tire model which is a circular ring including the shear stresses and the non linear effects due to the vehicle weight. A more complex model composed of tire/wheel/cavity including all the rotating effects is also validated by comparison with experiments. Then the contact with a real road is calculated by different approaches to get the acceptable computing time for industrial uses. In particular, the calculation of the contact is divided into a non-linear static analysis followed by a linear dynamic calculation. The validation of this model is successfully achieved by comparison test results
|
22 |
Fractional Stochastic Dynamics in Structural Stability AnalysisDeng, Jian January 2013 (has links)
The objective of this thesis is to develop a novel methodology of fractional
stochastic dynamics to study stochastic stability of viscoelastic
systems under stochastic loadings.
Numerous structures in civil engineering are driven by dynamic forces, such as
seismic and wind loads, which can be described satisfactorily only by using
probabilistic models, such as white noise processes, real noise processes, or
bounded noise processes. Viscoelastic materials exhibit time-dependent stress
relaxation and creep; it has been shown that fractional calculus provide a
unique and powerful mathematical tool to model such a hereditary property.
Investigation of stochastic stability of viscoelastic systems with fractional
calculus frequently leads to a parametrized family of fractional stochastic
differential equations of motion. Parametric excitation may cause parametric
resonance or instability, which is more dangerous than ordinary resonance as it
is characterized by exponential growth of the response amplitudes even in the
presence of damping.
The Lyapunov exponents and moment Lyapunov exponents provide not only the
information about stability or instability of stochastic systems, but also how
rapidly the response grows or diminishes with time. Lyapunov exponents
characterizes sample stability or instability. However, this sample stability
cannot assure the moment stability. Hence, to obtain a complete picture of the
dynamic stability, it is important to study both the top Lyapunov exponent and
the moment Lyapunov exponent. Unfortunately, it is very difficult to obtain the
accurate values of theses two exponents. One has to resort to numerical and
approximate approaches.
The main contributions of this thesis are: (1) A new numerical simulation
method is proposed to determine moment Lyapunov exponents of fractional
stochastic systems, in which three steps are involved: discretization of
fractional derivatives, numerical solution of the fractional equation, and an
algorithm for calculating Lyapunov exponents from small data sets. (2)
Higher-order stochastic averaging method is developed and applied to
investigate stochastic stability of fractional viscoelastic
single-degree-of-freedom structures under white noise, real noise, or bounded
noise excitation. (3) For two-degree-of-freedom coupled non-gyroscopic and
gyroscopic viscoelastic systems under random excitation, the Stratonovich
equations of motion are set up, and then decoupled into four-dimensional Ito
stochastic differential equations, by making use of the method of stochastic
averaging for the non-viscoelastic terms and the method of Larionov for
viscoelastic terms. An elegant scheme for formulating the eigenvalue problems
is presented by using Khasminskii and Wedig’s mathematical transformations from
the decoupled Ito equations. Moment Lyapunov exponents are approximately
determined by solving the eigenvalue problems through Fourier series expansion.
Stability boundaries, critical excitations, and stability index are obtained.
The effects of various parameters on the stochastic stability of the system are
discussed. Parametric resonances are studied in detail. Approximate analytical
results are confirmed by numerical simulations.
|
23 |
Simulation du comportement vibratoire non linéaire induit par frottement des freins aéronautiquesHurel, Gabriel 27 May 2014 (has links)
Le présent document a pour objet la modélisation transitoire non linéaire du comportement vibratoire des systèmes de frein aéronautiques. Le but est de reproduire numériquement l’apparition et le niveau des vibrations au cours du temps, afin de les maîtriser et d’adapter la conception du frein. Les essais de freinage mettent en évidence deux modes de vibration que sont le whirl et le squeal. Si les niveaux de ces vibrations deviennent trop importants, la structure de la roue et du train d’atterrissage peut être endommagée. Afin d’éviter de tels dommages, la conception du frein doit être adaptée. Pour réaliser cela, Messier-Bugatti-Dowty doit disposer d’un modèle capable de prédire les niveaux de vibration du frein au cours du temps pendant la phase de freinage. Le modèle doit avoir une précision suffisante, être en lien avec la maquette numérique et ne doit pas exiger de recalage. Un premier travail vise à améliorer le modèle éléments finis existant qui se révèle être trop imprécis. Une étude portant sur les effets gyroscopiques permet d’évaluer leur impact sur la fréquence et la stabilité des modes de whirl. Une modélisation plus complète du bâti d’essai améliore la précision de la fréquence du mode de squeal. Enfin, le mode de whirl est mieux simulé grâce au développement d’un modèle de pneumatique à partir de son analyse modale. Ce modèle est ensuite réduit afin de réaliser une intégration temporelle. Une sous-structuration permet de séparer l’ensemble des disques du frein, où le frottement et la non-linéarité se situent, du reste de la structure considérée comme linéaire. Trois techniques de réduction de l’ensemble des disques sont exposées. On évalue leur représentativité par rapport au modèle non-réduit en comparant les fréquences et la stabilité des modes propres. La première méthode est une représentation nodale de l’ensemble des disques. Les équations décrivant la non-linéarité et le frottement sont analytiques. Pour la deuxième méthode, la non-linéarité est déplacée à l’extrémité de l’ensemble des disques pour la découpler du frottement. La troisième méthode, plus ambitieuse et complexe, conserve à la fois l’emplacement de la nonlinéarité aux interfaces frottantes et la géométrie des disques. Une technique de réduction modale permet d’abaisser le nombre de degrés de liberté non linéaires. Pour clore ce rapport, des simulations transitoires sont calculées à partir des modèles réduits. Des études d’influences sont réalisées. Les paramètres étudiés sont le type d’algorithme d’intégration temporelle, l’amortissement introduit, la loi non linéaire, la pression hydraulique d’entrée et le coefficient de frottement. Leurs impacts sur les niveaux et la durée d’apparition des vibrations est évalué. / This report deals with the non-linear transient simulation of the dynamic behaviour of aeronautic brake systems. The objective is to reproduce the occurrence and level of vibrations versus time in order to control and adjust design consequently. The braking tests highlight two eigenmodes, which are called whirl and squeal. If the level of these vibrations becomes too high, the structures of the wheel and the landing gear may be damaged. To avoid damage, the design has to be adjusted. To achieve this, Messier-Bugatti-Dowty requires a model that is able to predict the levels of vibrations of the brake when it is braking. This model must have an adequate accuracy, be linked to the digital mockup and not require tuning. First, the existing finite element model has to be improved because its initial accuracy is not acceptable. A study about gyroscopic effects allows to assess their impact on the frequency and the stability of whirl modes. A complete modelling of the test frame improves the squeal modes’ frequency accuracy. At last, the whirl modes are better simulated due to the development of a tyre model based on modal analysis data. Then, the finite element model is reduced in order to perform a temporal integration. A substructuring allows to separate the set of brake discs (heat sink), where friction and non-linearities are located, from the rest of the structure which is considered linear. Three heat sink reduction techniques are proposed. Their representativeness are estimated compared to the non-reduced model. The first technique is a nodal description of the heat sink. The equations of friction and non-linearity are analytical. For the second technique, the non-linearity is displaced to the extremity of the heat sink to uncouple it from friction. The third technique, more ambitious and complex, keeps the location and non-linearity in friction interfaces and discs geometry. A reduction technique enables to decrease the number of non-linear degrees of freedom. As a conclusion, transient simulations are computed from reduced models. Sensitivity studies are performed. Studied parameters are the type of integration solver, introduced damping, non-linearities, hydraulic pressure, and friction coefficient. Their impacts on level and duration of occurrence of vibrations is estimated.
|
24 |
Konstrukce jednokolového mobilního robotu se schopností stání na místě / Design of single-wheel mobile robotŠustek, David January 2020 (has links)
The master thesis deals with the issue of a single-wheeled robot, especially its construction and movement in more difficult terrain with the possibility of collecting samples. A variant of the robot balanced by a pair of gyroscopes was chosen as the most suitable construction. The robot is able to move in a space with an inclination of up to 24° and is equipped with its own manipulator design.
|
25 |
[en] DYNAMIC OF A VERTICAL OVERHUNG ROTOR WITH IMPACT / [pt] DINÂMICA DE UM ROTOR VERTICAL EM BALANÇO COM IMPACTOFREDY JONEL CORAL ALAMO 16 June 2003 (has links)
[pt] Neste trabalho um modelo dinâmico para um rotor vertical em
balanço, considerando o fenômeno de contato com a sua
guarda, é analisado. A conjunto é modelado como um sistema
eixo-rotor-estator com contato. A análise do contato é
particularmente complexa pela não linearidade nas equações
de movimento. O impacto com o estator é levado em conta
através do modelo de contato tipo Kelvin-Vôigt, e, as
equações de movimento, do rotor, são deduzidas através da
formulação Lagrangeana; estas equações podem capturar os
fenômenos devido à vibração lateral, como: precessão
direta, precessão retrograda, rolamento e escorregamento.
Pela existência de diferentes parâmetros combinados e
devido à não linearidade da equação de movimento, a
resposta dinâmica não é simples de ser obtida apriori.
Portanto, métodos numéricos são empregados para a solução,
especificamente emprega-se o método de Runge-Kutta Fehlberg
de passo variável. Os resultados da simulação mostram que
para certas condições, o rotor pode mudar de orbita devido
aos impactos com o estator, podendo chegar a realizar
precessão retrograda. Este tipo de fenômeno é considerado
como o mais violento e perigoso nas maquinas rotativas. Com
o fim de estudar a dinâmica lateral do sistema, um rotor
vertical em balanço com guarda anular é investigado.
A passagem dela através de sua velocidade critica, quando
conduzida por um motor elétrico, é analisada (e também
quando o sistema opera em velocidades constantes). Além
disso, neste trabalho, os resultados experimentais obtidos
da bancada de experimentação são usados para estudar o
fenômeno da precessão. / [en] In this work a dynamic model for the overhung rotor,
considering the contact phenomenon between the rotor and
the stator is analyzed. It is modeled as a shaft-rotor-
stator system with contact. The analysis of contact is
particularly complex, due to the high nonlinearity of
motion equations. Impact with the stator is accounted by a
consistent contact model, as Kelvin-Vôigt model, and,
rotor`s motion equation is encountered employing
Lagrangean`s method; this equations are capable of
capturing the phenomenon due to lateral vibration, as:
forward whirl, backward whirl, rolling or sliding along the
stator. Due to the combined parameters and the effect of
nonlinearity in motion equations, the dynamical
response is not simple or easily predictable. Numerical
simulation is the preferred method of analysis, exactly is
used the Runge-Kutta Fehlberg method with variable step.
Simulation results show that under certain conditions, a
rotor changes its orbit due the impacts with the stator and
after that, it executes backward whirl motion. It is a kind
of phenomenon, which is considered as the most violent and
dangerous in rotating machines. To this end, the analysis
of a vertical overhung shaft-disc system with annular guard
is investigated. The passing through its critical speed is
analyzed when driven by an electric motor (also when the
system operates under a constant rotational velocity). In
addition, in this work the results obtained with an
experimental test rig are used to investigate the whirl
phenomenon.
|
26 |
Development, Modelling and Control of a Multirotor VehicleMikkelsen, Markus January 2015 (has links)
The interest of drones in all forms has exploded in the recent years. The development of multirotor vehicles such as quadcopters and octocopters, has reached a point where they are cheap and versatile enough to start becoming a part of everyday life. It is clear to say that the future applications seem limitless. This thesis goes through the steps of development, modelling and control design of an octocopter system. The developed octocopter builds on a concept of using the mini computer Raspberry Pi together with the code generation functionality of Matlab/Simulink. The mathematical modelling of the octocopter includes the thrust and torques generated by the propellers, added with gyroscopic torque. These are combined with the aerodynamic effects caused by incoming air. The importance of modelling the later mentioned effects has increased with the demand of precise controlled extreme manoeuvres. A full state feedback based hybrid controller scheme is designed against a linearized model, which makes use of the motor dynamics. The controllers show good performance in simulations and are approved for flight tests, which are conducted on two separate occasions. The octocopter makes two successful flights, proving that the concept can be applied on multirotor vehicles. However, there is a miss-match between the mathematical model and the physical octocopter, leaving questions for future work.
|
27 |
Interface circuits for readout and control of a micro-hemispherical resonating gyroscopeMayberry, Curtis Lee 12 January 2015 (has links)
Gyroscopes are inertial sensors that measure the rate or angle of rotation. One of the most promising technologies for reaching a high-performance MEMS gyroscope has been development of the micro-hemispherical shell resonator. (μHSR) This thesis presents the electronic control and read-out interface that has been developed to turn the μHSR into a fully functional micro-hemispherical resonating gyroscope (μHRG) capable of measuring the rate of rotation. First, the μHSR was characterized, which both enabled the design of the interface and led to new insights into the linearity and feed-through characteristics of the μHSR. Then a detailed analysis of the rate mode interface including calculations and simulations was performed. This interface was then implemented on custom printed circuit boards for both the analog front-end and analog back-end, along with a custom on-board vacuum chamber and chassis to house the μHSR and interface electronics. Finally the performance of the rate mode gyroscope interface was characterized, showing a linear scale factor of 8.57 mv/deg/s, an angle random walk (ARW) of 34 deg/sqrt(hr) and a bias instability of 330 deg/hr.
|
Page generated in 0.0453 seconds