• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teoria de poda na família de Hénon / Pruning theory in the Hénon family.

Mogollon, Juan Valentin Mendoza 17 February 2011 (has links)
A teoria de poda é um caminho para dar uma descrição topologica de famílias de homeomorfismos de superfície. Nesta tese desenvolvemos uma teoria de poda diferenciável. Primeiro definimos discos de poda para o exemplo paradigmático da ferradura de Smale e provamos um teorema de poda diferenciável. Depois, com uma construção similar a derivados de Anosov, extendemos este teorema para difeomorfissmos hiperbólicos. Também aplicamos estas construções ao estudo da família de Hénon real e mostramos como se relaciona esta teoria com a família de Hénon complexa. Assim, provamos a Conjectura da Frente de Poda para alguns parâmetros reais na família de transformações de Hénon. / Pruning is originally a way of giving a topological description of the dynamics of families of surface homeomorphisms. A diferentiable pruning theory is developed here. First pruning discs and the pruning theorem are presented for Smale\'s horseshoe, which is the paradigmatic chaotic dynamical system in dimension 2. Then this is generalized to hyperbolic surface difeomorphisms. This is then combined with complex and numerical techniques to give a computer assisted proof of the Pruning Front Conjecture for certain open sets of (real) parameters in the Hénon family.
2

Teoria de poda na família de Hénon / Pruning theory in the Hénon family.

Juan Valentin Mendoza Mogollon 17 February 2011 (has links)
A teoria de poda é um caminho para dar uma descrição topologica de famílias de homeomorfismos de superfície. Nesta tese desenvolvemos uma teoria de poda diferenciável. Primeiro definimos discos de poda para o exemplo paradigmático da ferradura de Smale e provamos um teorema de poda diferenciável. Depois, com uma construção similar a derivados de Anosov, extendemos este teorema para difeomorfissmos hiperbólicos. Também aplicamos estas construções ao estudo da família de Hénon real e mostramos como se relaciona esta teoria com a família de Hénon complexa. Assim, provamos a Conjectura da Frente de Poda para alguns parâmetros reais na família de transformações de Hénon. / Pruning is originally a way of giving a topological description of the dynamics of families of surface homeomorphisms. A diferentiable pruning theory is developed here. First pruning discs and the pruning theorem are presented for Smale\'s horseshoe, which is the paradigmatic chaotic dynamical system in dimension 2. Then this is generalized to hyperbolic surface difeomorphisms. This is then combined with complex and numerical techniques to give a computer assisted proof of the Pruning Front Conjecture for certain open sets of (real) parameters in the Hénon family.

Page generated in 0.0613 seconds