Spelling suggestions: "subject:"högtalardarisering"" "subject:"signaturverifiering""
1 |
Speaker Diarization System for Call-center dataLi, Yi January 2020 (has links)
To answer the question who spoke when, speaker diarization (SD) is a critical step for many speech applications in practice. The task of our project is building a MFCC-vector based speaker diarization system on top of a speaker verification system (SV), which is an existing Call-centers application to check the customer’s identity from a phone call. Our speaker diarization system uses 13-Dimensional MFCCs as Features, performs Voice Active Detection (VAD), segmentation, Linear Clustering and the Hierarchical Clustering based on GMM and the BIC score. By applying it, we decrease the Equal Error Rate (EER) of the SV from 18.1% in the baseline experiment to 3.26% on the general call-center conversations. To better analyze and evaluate the system, we also simulated a set of call-center data based on the public audio databases ICSI corpus. / För att svara på frågan vem som talade när är högtalardarisering (SD) ett kritiskt steg för många talapplikationer i praktiken. Uppdraget med vårt projekt är att bygga ett MFCC-vektorbaserat högtalar-diariseringssystem ovanpå ett högtalarverifieringssystem (SV), som är ett befintligt Call-center-program för att kontrollera kundens identitet från ett telefonsamtal. Vårt högtalarsystem använder 13-dimensionella MFCC: er som funktioner, utför Voice Active Detection (VAD), segmentering, linjär gruppering och hierarkisk gruppering baserat på GMM och BIC-poäng. Genom att tillämpa den minskar vi EER (Equal Error Rate) från 18,1 % i baslinjeexperimentet till 3,26 % för de allmänna samtalscentret. För att bättre analysera och utvärdera systemet simulerade vi också en uppsättning callcenter-data baserat på de offentliga ljuddatabaserna ICSI corpus.
|
Page generated in 0.096 seconds