• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecological Interface Design for Turbine Secondary Systems in a Nuclear Power Plant: Effects on Operator Situation Awareness

Kwok, Jordanna January 2007 (has links)
Investigations into past accidents at nuclear power generating facilities such as that of Three Mile Island have identified human factors as one of the foremost critical aspects in plant safety. Errors resulting from limitations in human information processing are of particular concern for human-machine interfaces (HMI) in plant control rooms. This project examines the application of Ecological Interface Design (EID) in HMI information displays and the effects on operator situation awareness (SA) for turbine secondary systems based on the Swedish Forsmark 3 boiling-water reactor nuclear power plant. A work domain analysis was performed on the turbine secondary systems yielding part-whole decomposition and abstraction hierarchy models. Information display requirements were subsequently extracted from the models. The resulting EID information displays were implemented in a full-scope simulator and evaluated with six licensed operating crews from the Forsmark 3 plant. Three measures were used to examine SA: self-rated bias, Halden Open Probe Elicitation (HOPE), and Situation Awareness Control Room Inventory (SACRI). The data analysis revealed that operators achieved moderate to good SA; operators unfamiliar with EID information displays were able to develop and maintain comparable levels of SA to operators using traditional forms of single sensor-single indicator (SS-SI) information displays. With sufficient training and experience, operator SA is expected to benefit from the knowledge-based visual elements in the EID information displays. This project was researched in conjunction with the Cognitive Engineering Laboratory at the University of Toronto and the Institute for Energy Technology (IFE) in Halden, Norway.
2

Ecological Interface Design for Turbine Secondary Systems in a Nuclear Power Plant: Effects on Operator Situation Awareness

Kwok, Jordanna January 2007 (has links)
Investigations into past accidents at nuclear power generating facilities such as that of Three Mile Island have identified human factors as one of the foremost critical aspects in plant safety. Errors resulting from limitations in human information processing are of particular concern for human-machine interfaces (HMI) in plant control rooms. This project examines the application of Ecological Interface Design (EID) in HMI information displays and the effects on operator situation awareness (SA) for turbine secondary systems based on the Swedish Forsmark 3 boiling-water reactor nuclear power plant. A work domain analysis was performed on the turbine secondary systems yielding part-whole decomposition and abstraction hierarchy models. Information display requirements were subsequently extracted from the models. The resulting EID information displays were implemented in a full-scope simulator and evaluated with six licensed operating crews from the Forsmark 3 plant. Three measures were used to examine SA: self-rated bias, Halden Open Probe Elicitation (HOPE), and Situation Awareness Control Room Inventory (SACRI). The data analysis revealed that operators achieved moderate to good SA; operators unfamiliar with EID information displays were able to develop and maintain comparable levels of SA to operators using traditional forms of single sensor-single indicator (SS-SI) information displays. With sufficient training and experience, operator SA is expected to benefit from the knowledge-based visual elements in the EID information displays. This project was researched in conjunction with the Cognitive Engineering Laboratory at the University of Toronto and the Institute for Energy Technology (IFE) in Halden, Norway.
3

Hodnocení bezpečnosti a spolehlivosti jaderného paliva pomocí in-core experimentů na výzkumných jaderných reaktorech / Evaluation of Nuclear Fuel Safety and Reliability Using Research Reactors' In-Core Experiments

Matocha, Vítězslav January 2014 (has links)
The aim of this master thesis is to show a connection among nuclear fuel safety, experiments led in research reactors and calculation codes. This thesis focuses on the calculation code Transuranus. There are represented four experiments, which were calculated in Transuranus. The fission gas release, elongation and growth of fuel were particularly monitored. Is is possible to set differences among versions v1m1j09 and v1m3j12 from achieved results, as well as the influence of selected Transuranus parameters on the results, so the thesis may bring new pieces of knowledge for improvement of safety analysis calculation by Transuranus.

Page generated in 0.0438 seconds