1 |
Measuring and Understanding Effects of Prescribed Fire in a Headwater CatchmentErwin, Elizabeth G. 11 July 2019 (has links)
Headwater catchments play a large role in the storage and release of water and chemical constituents, thereby influencing downstream flows and water quality. Recent advances in water quality monitoring technologies have created an opportunity to better assess water chemistry variation by using high temporal resolution, in situ sensors. However, despite these new technologies, there have been limited studies on installation approaches and their effects on sensor measurements. Accurate in situ monitoring is particularly important to capture catchment disturbance effects that may be highly dynamic over time (e.g., following storms) or limited in duration. For example, prescribed fire is a commonly applied forest management tool, but there remain questions regarding how this disturbance affects catchment soils and resultant stream water chemistry. Effective assessment of prescribed fire thus requires coupled monitoring of both soil properties and water chemistry. In this thesis, I addressed two linked objectives: i) assess the effects of commonly used protective housings on in situ sensor measurements (Chapter 2) and ii) evaluate prescribed burn effects in a southwestern Virginia, USA headwater catchment (Chapter 3). In Chapter 2, I compared four different housing types (mesh, screen, holes, and open) using in situ specific conductance measurements over time and from salt tracer injections for discharge estimates. This study demonstrated substantial effects from some of the housing types evaluated, where flow resistance reduced water exchange between stream water and water in contact with the sensor. From these findings, I suggest that in situ water quality sensors should be deployed in housing types with large openings perpendicular to flow. In Chapter 3, I assessed prescribed fire effects on soil properties (particle size, aggregate stability, and chemistry), stream discharge, and fine-scale water chemistry dynamics. Findings demonstrated some significant differences following fire in soil properties (e.g., overall decrease in aggregate stability, general decreases in total carbon and nitrogen of mineral soils), water quality (e.g., increased levels of DOC, turbidity, and nitrate) and discharge (increases in stage and flow). While these changes were statistically significant, differences in parameters before and after fire were generally small. Future work should examine if these effects persist through time, and whether the minor level of disturbance observed in this study results in any negative environmental impacts. / Master of Science / Headwater catchments (where precipitation first becomes streamflow) provide important aquatic habitat and regulate downstream water flows and chemistry. Recent advances in water quality monitoring technologies have created an opportunity to better assess water chemistry variability by using high frequency, submerged water quality sensors. However, these new technologies present new, unique challenges, such as measurement errors that may be induced by different installation methodologies. Accurate measurements are particularly important to evaluate how changes in catchment conditions (e.g., soils, vegetation) impact local and downstream water quality. For example, prescribed fire is a commonly used forest management tool, but questions remain about how it affects catchment soils and headwater stream chemistry. Consequently, understanding the effects of this and other catchment disturbances requires coupled monitoring of both soil properties and water quality. In this thesis, I addressed two objectives: i) assess the effects of commonly used protective housings on water quality sensor measurements (Chapter 2) and ii) evaluate prescribed burn effects in a southwestern Virginia, USA headwater catchment (Chapter 3). In Chapter 2, I demonstrated substantial effects from some of the housings evaluated and suggest that water quality sensors should be deployed in housing types with large openings perpendicular to flow. In Chapter 3, I demonstrated some significant effects of prescribed fire on soil properties (e.g. overall decrease in soil stability, general decreases in total carbon and nitrogen of mineral soils), water quality (e.g., increased levels of dissolved organic matter, turbidity, and nitrate) and flow (increases in stream water levels and flow). While these changes were statistically significant, differences in parameters before and after fire were generally small. Future work should examine if these effects persist through time, and whether this minor level of disturbance causes any negative environmental impacts.
|
2 |
The Origin of Streams : Stream cartography in Swiss pre alpine headwater / Bäckarnas ursprung : Kartering över temporära bäckar i föralpina källområden i SchweizSjöberg, Oskar January 2016 (has links)
Temporary streams have received undeservedly little scientific attention and as a result their role in hydrological, biogeochemical and ecological processes is not yet fully understood. The ultimate goal of the research was to gain a better understanding of the temporary stream network and the processes that control it and determine how the active and connected stream length change with catchment wetness conditions to find simple methods to map seasonal and event-based changes in temporary flowing stream networks. Streams, springs and wetlands of four relatively small headwater catchments (11.7 – 25.3 km2) and one wetland in the steep and remote Zwäckentobel catchment in Alptal, canton Schwyz (Switzerland), were mapped and stream segments were classified by flow type during different weather conditions using direct observations. The mapping was performed by an elite orienteer with mapping experience. The variation in streamflow was analysed and related to the catchment wetness and topography using the TWI-values and the upslope accumulated area of the stream segments. As the catchments wetted up in response to fall rainfall events after a dry summer the flowing stream density increased up to five times and the connected stream density increased up to six times with a 150-fold increase in discharge. Also the number of flowing stream heads increased up to ten times. The best description of the pattern of stream expansion is a combination of the variable source area and the element threshold concepts, where surface topography, particularly TWI (Topographic Wetness Index) and upslope accumulated area (A), and local storage areas controls where streamflow is initiated and how flow in different stream segments connects. Streams in the Alptal show a seasonally bottom up or disjointed connection pattern. Mapping the temporary streams in steep and remote watersheds as a function of hydrological conditions is not an easy task. It is however necessary in order to fully understand where water is flowing or not. A combination of field observations with monitoring equipment can facilitate this extensive work by providing a more detailed temporal resolution.
|
3 |
Mécanismes de solubilisation et transfert de matières organiques dissoutes à l'échelle d'un bassin versant agricole : apport de l'étude de la composition moléculaire / Solubilisation and transfer mechanisms of dissolved organic matter at the agricultural headwater catchment scale : contribution of the molecular analysisDenis, Marie 27 October 2017 (has links)
Les matières organiques dissoutes (MOD), en tant que sources de nutriments ou potentiels vecteurs de pollution, sont impliquées dans de nombreuses problématiques environnementales. Bien qu'elles fassent l'objet de nombreuses études depuis plusieurs décennies, les mécanismes gouvernant leur solubilisation et leur transfert depuis les sols vers les systèmes aquatiques demeurent sujets à discussion. En s'appuyant sur l'étude de la composition moléculaire des MOD par hydrolyse et méthylation assistée par température et couplée à la chromatographie en phase gazeuse et à la spectrométrie de masse (HMT-CPG-SM), cette thèse a pour objectif d'apporter une meilleure compréhension de leurs mécanismes de solubilisation et de transfert à l'échelle d'un bassin versant agricole. Ce travail s'est appuyé sur le bassin versant expérimental de Kervidy-Naizin (Morbihan, Observatoire de Recherche en Environnement AgrHys) afin d'observer les processus mis en jeux à deux échelles temporelles différentes. A l'échelle de la crue, ce travail a permis de préciser l'impact des conditions hydrologiques spécifiques sur la dynamique des MOD. A l'échelle annuelle, l'utilisation conjointe de la signature isotopique du carbone (δ13C) et de la composition moléculaire des MOD a permis de préciser les mécanismes de transfert de MOD impliqués à l'échelle du versant. L'utilisation de la HMT-CPG-SM s'est avéré un outil adéquat pour l'étude de la dynamique des MOD. L'ensemble des résultats ainsi obtenus ont permis de souligner l'importance des conditions hydrologiques et en particulier de la dynamique de nappe dans les processus de solubilisation et de transfert des MOD. / Dissolved organic matter (DOM), as sources of nutrient or pollutant dissemination pathway are implied in numerous environmental issues. Although DOM have been the subject of numerous studies for several decades, the mechanisms implied for their solubilization and their transport from soils to aquatic systems are still a matter of discussion. Based on DOM molecular composition determined using thermally assisted hydrolysis and methylation –gas chromatography – mass spectrometry (THM-GC-MS), this thesis aims to provide a better understanding of their solubilization and transfer mechanisms at the scale of an agricultural headwater catchment. This work was conducted on the experimental headwater catchment of Kervidy-Naizin (France, Environmental Research Observatory AgrHys) in order to determine the processes implied at two temporal scales. At the scale of a rain event, this work has clarified the impact of hydrological conditions on the DOM dynamics. At annual scale, the use of carbon isotope signature (δ13C) and DOM molecular composition allowed to clarify the DOM transfer mechanisms at the slope scale. The use of THM-GC-MS appears to be a suitable tool for the study of DOM dynamics. The results thus obtained allowed to highlight the role of hydrological conditions and in particular the water-table level in the solubilization and transfer of DOM.
|
4 |
天竜川上流域における急峻な3つの小流域の流出特性の違い岩下, 広和, IWASHITA, Hirokazu, 恩田, 裕一, ONDA, Yuichi, 一柳, 錦平, ICHIYANAGI, Kimpei 12 1900 (has links) (PDF)
農林水産研究情報センターで作成したPDFファイルを使用している。
|
Page generated in 0.062 seconds