1 |
The Method of Batch Inference for Multivariate DiffusionsLysy, Martin January 2012 (has links)
Diffusion processes have been used to model a variety of continuous-time phenomena in Finance, Engineering, and the Natural Sciences. However, parametric inference has long been complicated by an intractable likelihood function, the solution of a partial differential equation. For many multivariate models, the most effective inference approach involves a large amount of missing data for which the typical Gibbs sampler can be arbitrarily slow. On the other hand, a recent method of joint parameter and missing data proposals can lead to a radical improvement, but their acceptance rate scales exponentially with the number of observations. We consider here a method of dividing the inference process into separate data batches, each small enough to benefit from joint proposals. A conditional independence argument allows batch-wise missing data to be sequentially integrated out. Although in practice the integration is only approximate, the Batch posterior and the exact parameter posterior can often have similar performance under a Frequency evaluation, for which the true parameter value is fixed. We present an example using Heston’s stochastic volatility model for financial assets, but much of the methodology extends to Hidden Markov and other State-Space models. / Statistics
|
2 |
Mesh free methods for differential models in financial mathematicsSidahmed, Abdelmgid Osman Mohammed January 2011 (has links)
Philosophiae Doctor - PhD / Many problems in financial world are being modeled by means of differential equation. These problems are time dependent, highly nonlinear, stochastic and heavily depend on the previous history of time. A variety of financial products exists in the market, such as forwards, futures, swaps and options. Our main focus in this thesis is to use the numerical analysis tools to solve some option pricing problems. Depending upon the inter-relationship of the financial derivatives, the dimension of the associated problem increases drastically and hence conventional methods (for example, the finite difference methods or finite element methods) for solving them do not provide satisfactory results. To resolve this issue, we use a special class of numerical methods, namely, the mesh free methods. These methods are often better suited to cope with changes in the geometry of the domain of interest than classical discretization techniques. In this thesis, we apply these methods to solve problems that price standard and non-standard options. We then extend the proposed approach to solve Heston' volatility model. The methods in each of these cases are analyzed for stability and thorough comparative numerical results are provided. / South Africa
|
3 |
Mesh Free Methods for Differential Models In Financial MathematicsSidahmed, Abdelmgid Osman Mohammed January 2011 (has links)
Philosophiae Doctor - PhD / Many problems in financial world are being modeled by means of differential equation. These problems are time dependent, highly nonlinear, stochastic and heavily depend on the previous history of time. A variety of financial products exists in the market, such as forwards, futures, swaps and options. Our main focus in this thesis is to use the numerical analysis tools to solve some option pricing problems. Depending upon the inter-relationship of the financial derivatives, the dimension of the associated problem increases drastically and hence conventional methods (for example, the finite difference methods or finite element methods) for solving them do not provide satisfactory results. To resolve this issue, we use a special class of numerical methods, namely, the mesh free methods. These methods are often better suited to cope with changes in the geometry of the domain of interest than classical discretization techniques. In this thesis, we
apply these methods to solve problems that price standard and non-standard options. We then extend the proposed approach to solve Heston's volatility model. The methods in each of these cases are analyzed for stability and thorough comparative numerical results are provided.
|
Page generated in 0.068 seconds