Spelling suggestions: "subject:"heterophonic"" "subject:"heterophil""
1 |
A comparative study of a subjective heterophoria testing with a phoropter and trial frame among health science students at University of Limpopo, South AfricaTsotetsi, Annah Lerato January 2021 (has links)
Thesis (M. A. (Optom.)) -- University of Limpopo, 2021 / Background: There are several clinical techniques for the subjective measurement of heterophoria. In South Africa, von Graefe is one of the most commonly used techniques to quantify heterophoria using the phoropter. However, most rural community clinics have trial frames rather than phoropters to perform heterophoria measurements and other clinical tests.
Heterophoria or phoria is the misalignment of an eye that occurs when binocular sensory fusion is blocked. The distance heterophoria is determined by the tonic vergence resting state and negative accommodative vergence. In distance vision, normal heterophoria is zero. The tonic vergence resting state is the vergence angle dictated by tonic vergence innervation alone. However, during a near heterophoria test, the vergence angle observed involves multiple innervational factors. Blocking binocular fusion eliminates disparity vergence innervation. Because of the dual interaction, the loss of disparity vergence innervation initiates simultaneous changes of accommodation innervation.
Purpose: The purpose of the study was to investigate the agreement of von Graefe heterophoria measurement using the phoropter and a trial frame.
Setting: The study was conducted at an Optometry Clinic, University of Limpopo, South Africa.
Methods: Distance and near horizontal and vertical heterophoria measurements were performed on 88 visually-normal university students using the phoropter and a trial frame. The 95% limits of agreement were compared using the exact Bland-Altman statistical test.
To measure the horizontal heterophoria, 12 prism base-in was placed before the right eye and 6 prism base-up before the left eye. The prism in front of the right eye was reduced until the participant reported that the two images were vertically aligned. The vertical heterophoria was measured by reducing the prism in front of the left eye until the participant reported that the two images were horizontally aligned. Zero deviation was recorded as ortho or orthophoria.
Results: For distance horizontal heterophoria, the Von Graefe values were 0.39±2.0 and 0.38±1.8Δ with the phoropter and trial frame, respectively. The mean near
v
horizontal heterophoria were 3.69±3.3 and 4.13±3.27Δ with the phoropter and trial frame. There were no significant differences between the mean heterophorias measured using the phoropter and the trial frame, p ˃ 0.05. For the vertical heterophorias at distance and near vision, the means were close to orthophoria. The mean differences and limits of agreement showed good agreement of Von Graefe test using the phoropter and trial frame.
Conclusion: Measurement of Von Graefe testing with the phoropter and trial frame showed a high level of agreement for both distance and near vision performed through the phoropter and a trial frame. For clinical and research purposes, the phoropter and trial frame can be used interchangeably for measuring heterophoria.
Keywords: heterophoria, phoropter, trial frame, von Graefe, prism
|
2 |
Blur and individual differences in oculomotor status : their role in depth cue integration in adult human observersHorsman, Janet Mary January 1997 (has links)
No description available.
|
3 |
Lateral heterophoria and its sequential measurement by a computer-controlled phorometer.Larson, William L. January 1973 (has links)
No description available.
|
4 |
Lateral heterophoria and its sequential measurement by a computer-controlled phorometer.Larson, William L. January 1973 (has links)
No description available.
|
5 |
Stimulus Phoria versus Response Phoria in a Prepresbyopic Population at COSI (Center of Science and Industry)Pettey, Dix H. 28 May 2015 (has links)
No description available.
|
6 |
Visual discomfort whilst viewing 3D stereoscopic stimuliKarpicka, Edyta January 2015 (has links)
3D stereoscopic technology intensifies and heightens the viewer s experience by adding an extra dimension to the viewing of visual content. However, with expansion of this technology to the commercial market concerns have been expressed about the potential negative effects on the visual system, producing viewer discomfort. The visual stimulus provided by a 3D stereoscopic display differs from that of the real world, and so it is important to understand whether these differences may pose a health hazard. The aim of this thesis is to investigate the effect of 3D stereoscopic stimulation on visual discomfort. To that end, four experimental studies were conducted. In the first study two hypotheses were tested. The first hypothesis was that the viewing of 3D stereoscopic stimuli, which are located geometrically beyond the screen on which the images are displayed, would induce adaptation changes in the resting position of the eyes (exophoric heterophoria changes). The second hypothesis was that participants whose heterophoria changed as a consequence of adaptation during the viewing of the stereoscopic stimuli would experience less visual discomfort than those people whose heterophoria did not adapt. In the experiment an increase of visual discomfort change in the 3D condition in comparison with the 2D condition was found. Also, there were statistically significant changes in heterophoria under 3D conditions as compared with 2D conditions. However, there was appreciable variability in the magnitude of this adaptation among individuals, and no correlation between the amount of heterophoria change and visual discomfort change was observed. In the second experiment the two hypotheses tested were based on the vergence-accommodation mismatch theory, and the visual-vestibular mismatch theory. The vergence-accommodation mismatch theory predicts that a greater mismatch between the stimuli to accommodation and to vergence would produce greater symptoms in visual discomfort when viewing in 3D conditions than when viewing in 2D conditions. An increase of visual discomfort change in the 3D condition in comparison with the 2D condition was indeed found; however the magnitude of visual discomfort reported did not correlate with the mismatch present during the watching of 3D stereoscopic stimuli. The visual-vestibular mismatch theory predicts that viewing a stimulus stereoscopically will produce a greater sense of vection than viewing it in 2D. This will increase the conflict between the signals from the visual and vestibular systems, producing greater VIMS (Visually- Induced Motion Sickness) symptoms. Participants did indeed report an increase in motion sickness symptoms in the 3D condition. Furthermore, participants with closer seating positions reported more VIMS than participants sitting farther away whilst viewing 3D stimuli. This suggests that the amount of visual field stimulated during 3D presentation affects VIMS, and is an important factor in terms of viewing comfort. In the study more younger viewers (21 to 39 years old) than older viewers (40 years old and older) reported a greater change in visual discomfort during the 3D condition than the 2D condition. This suggests that the visual system s response to a stimulus, rather than the stimulus itself, is a reason for discomfort. No influence of gender on viewing comfort was found. In the next experiment participants fusion capability, as measured by their fusional reserves, was examined to determine whether this component has an impact on reported discomfort during the watching of movies in the 3D condition versus the 2D condition. It was hypothesised that participants with limited fusional range would experience more visual discomfort than participants with a wide fusion range. The hypothesis was confirmed but only in the case of convergent and not divergent eye movement. This observation illustrates that participants capability to convergence has a significant impact on visual comfort. The aim of the last experiment was to examine responses of the accommodation system to changes in 3D stimulus position and to determine whether discrepancies in these responses (i.e. accommodation overshoot, accommodation undershoot) could account for visual discomfort experienced during 3D stereoscopic viewing. It was found that accommodation discrepancy was larger for perceived forwards movement than for perceived backwards movement. The discrepancy was slightly higher in the group susceptible to visual discomfort than in the group not susceptible to visual discomfort, but this difference was not statistically significant. When considering the research findings as a whole it was apparent that not all participants experienced more discomfort whilst watching 3D stereoscopic stimuli than whilst watching 2D stimuli. More visual discomfort in the 3D condition than in the 2D condition was reported by 35% of the participants, whilst 24% of the participants reported more headaches and 17% of the participants reported more VIMS. The research indicates that multiple causative factors have an impact on reported symptoms. The analysis of the data suggests that discomfort experienced by people during 3D stereoscopic stimulation may reveal binocular vision problems. This observation suggests that 3D technology could be used as a screening method to diagnose un-treated binocular vision disorder. Additionally, this work shows that 3D stereoscopic technology can be easily adopted to binocular vision measurement. The conclusion of this thesis is that many people do not suffer adverse symptoms when viewing 3D stereoscopic displays, but that if adverse symptoms are present they can be caused either by the conflict in the stimulus, or by the heightened experience of self-motion which leads to Visually-Induced Motion Sickness (VIMS).
|
7 |
Rôle des afférences plantaires dans le contrôle postural et oculomoteur de sujets sains et de sujets avec Inefficience des Afférences Plantaires non symptomatique / Role of plantar afferents in postural and oculomotor control of healthy subjects and subjects with asymptomatic plantar extercoeptive inefficencyFoisy, Arnaud 27 June 2016 (has links)
Ce travail de thèse vise à évaluer le rôle des afférences cutanées plantaires dans le contrôle postural et oculomoteur en manipulant l’extéroception plantaire à l’aide de stimulations mécaniques plantaires fines. La 1ère étude a montré que des éléments médio-plantaires fins externes (EME) et surtout internes (EMI) améliorent la stabilité orthostatique et postériorisent le CPP de sujets jeunes et sains lors de mouvements des yeux. Ils ont aussi une action spécifique sur la vergence (pas sur les saccades) : les EMI augmentent l’amplitude phasique de divergence et diminuent la partie tonique, autrement dit agissent surtout sur la composante pré-programmée du mouvement ; alors que les EME agissent sur la convergence en augmentant son amplitude tonique, composante contrôlée sous influence de la rétroaction visuelle. Les inserts influent de manière directe sur le contrôle postural et oculomoteur par des voies spécifiques et indépendantes. La 2ème étude explique la variabilité des réponses des sujets de la 1ère. Nous avons mesuré leur degré d’utilisation des afférences extéroceptives plantaires par la méthode du Quotient Plantaire (QP = Surface CPP mousse / Surface CPP sol dur X 100). Un QP<100 suggère une Inefficience des Afférences Plantaires (IAP) : les sujets IAP ne présentent plus d’amélioration de leur stabilité ni aucune modification de la vergence avec les inserts plantaires. Nous proposons que cette situation soit non physiologique et relève d’un dysfonctionnement non douloureux latent des récepteurs plantaires, opposant les sujets IAP aux sujets ayant un QP normal. La 3ème étude a investigué les rapports entre l’utilisation des afférences plantaires et visuelles chez de jeunes adultes sains avec la méthode du QP et du Quotient du Romberg (QR). Elle mis en évidence l’existence d’une utilisation synergique des afférences visuelles et plantaires en vision de près, uniquement chez les sujets au QP normal. Les sujets IAP ont un QR plus bas que les sujets au QP normal, en vision de près et sur sol dur uniquement. Sur mousse, leur QR des sujets IAP augmente ; les yeux fermés, leur QP augmente, ce qui objective une asynergie visuo-podale. La 4ème étude, sur la même population, a montré qu’un EME bilatéral augmente l’esophorie, uniquement de loin et chez les sujets IAP. La 5ème étude a révélé l’influence de l’extéroception plantaire sur la perception de la Verticale Visuelle Subjective (VVS) sur la même population. Elle a montré une diminution de l’erreur vers la gauche de près chez les sujets au QP normal avec un EME droit, ainsi qu’une diminution de l’erreur absolue de loin chez les sujets IAP avec un EMI bilatéral. L’ensemble de ces travaux consolide au plan théorique l’importance des afférences plantaires aussi bien pour le contrôle orthostatique, le contrôle de la vergence, la perception de la VVS et l’alignement des yeux (phories). Ils démontrent que l’utilisation de ces afférences est variable selon les sujets et ont des implications cliniques pluridisciplinaires. / This thesis aims at assessing the role of plantar cutaneous afferents in postural and oculomotor control by manipulating plantar exteroception with thin mechanical plantar stimulations. The 1st study showed that lateral, and even more medial mid-foot plantar inserts (LAS / MAS) improve stability in quiet stance and induce a backward shift of the CoP of young healthy subjects during eye movements. They also have a specific action upon vergence (not saccades): MAS increase the phasic amplitude of divergence and decrease its tonic part, in other words they mainly act on the pre-programmed component of the movement; whereas LAS act upon convergence, increasing its tonic amplitude, which is under the influence of visual retroaction. The inserts have a direct influence upon postural and oculomotor control through specific and independent paths. The 2nd study explained the variability of the subjects’ answers of the former. We measured their degree of reliance upon plantar cutaneous afferents with the Plantar Quotient method (PQ = Surface CoP foam / Surface CoP firm gorund X 100). A PQ<100 suggest a Plantar Extercoeptive Inefficency (PEI): PEI subjects do not show any improvement of their stability or any modification of vergence with the inserts. We propose that this situation is non-physiological and results from a non-noxious latent dysfunction of the sole receptors, opposing the PEI subjects to those who have a normal PQ. The 3rd study investigated the relationship between the use of plantar and visual afferents in young healthy subjects with the method of the PQ and Romberg Quotient (RQ). It has evidenced the existence of a synergic use of visual and plantar afferents in close-distance vision, only among normal PQ subjects. The PEI subjects have a significantly lower RQ than the others only at close distance on firm ground. On foam, their RQ increases; eyes closed, their PQ increases, which objectifies a visual-podal asynergy. The 4th study, on the same population, showed that a bilateral LAS increase esophoria only at far distance and among the PEI subjects. The 5th study revealed the influence of plantar exteroception upon the perception of verticality on the same population. It has brought out a decrease of the leftward error at near distance among the normal PQ subjects with a right LAS, and a decrease of the absolute error at far distance among the PEI subjects with a bilateral MAS. Taken together, these studies support, from a theoretical point of view, the importance of plantar afferents for postural control as well as vergence control, SVV estimation and eyes alignment (phorias). They demonstrate that the use of these afferents depends on the subjects and have multidisciplinary clinical implications.
|
Page generated in 0.0802 seconds