1 |
An optimization model using the Assignment Problem to manage the location of parts : Master Thesis at the engine assembly at Scania CV ABLundquist, Josefin, O'Hara, Linnéa January 2017 (has links)
A key challenge for manufacturing companies is to store parts in an efficient way atthe lowest cost possible. As the demand of differentiated products increases, togetherwith the fact that old products are not phased out at the same pace, the need of usingstorage space as dynamically as possible becomes vital.Scania’s engine assembly manufactures engines for various automotive vehicles andmarine & industry applications. The variation in engine range in Scania’s offeringleads to the need of holding a vast, and increasing, assortment of parts in the produc-tion. As a consequence, this puts more pressure on the logistics and furnishing withinthe engine assembly.This master thesis aims to facilitate the process of assigning parts’ storage locationsin the most profitable manner through an optimization model, the Location Model, inExcel VBA. Together with the model, suggestions of work methods are presented.By implementing the Location Model at Scania’s engine assembly, 4,98 % of all keptparts are recommended location changes, while resulting in cost savings, for the chosen30-day period. These location changes result in a cost saving of 6,73 % of the totallogistic costs for the same time period.
|
2 |
Expansão estática de sistemas de transmissão de energia elétrica via FPANeves, Patrícia Silva 31 August 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2017-12-22T14:54:33Z
No. of bitstreams: 1
patriciasilvaneves.pdf: 1941458 bytes, checksum: 16ab3b743d0b75134d320f08de292905 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-22T18:33:39Z (GMT) No. of bitstreams: 1
patriciasilvaneves.pdf: 1941458 bytes, checksum: 16ab3b743d0b75134d320f08de292905 (MD5) / Made available in DSpace on 2018-01-22T18:33:39Z (GMT). No. of bitstreams: 1
patriciasilvaneves.pdf: 1941458 bytes, checksum: 16ab3b743d0b75134d320f08de292905 (MD5)
Previous issue date: 2017-08-31 / O presente trabalho apresenta a aplicação conjunta de uma técnica de otimização bioinspirada e de um Algoritmo Heurístico Construtivo (AHC) na resolução do problema de planejamento estático da expansão de sistemas de transmissão de energia elétrica. O algoritmo bioinspirado utilizado é uma versão modificada do Flower Pollination Algorithm (FPA), no qual foi introduzido o operador de seleção clonal, oriundo do Algoritmo de Seleção Clonal (CLONALG), com o objetivo de potencializar o processo de busca local do FPA. A versão modificada proposta neste trabalho foi nomeada de Clonal Flower Pollination Algorithm (CFPA). O CFPA realiza a otimização da expansão de sistemas de transmissão de energia elétrica, determinando, entre um conjunto de linhas (circuitos) de transmissão previamente definidas, quais devem ser construídas de modo a minimizar os custos de investimento e de operação do sistema elétrico, suprindo a demanda prevista para um dado horizonte de planejamento. De modo a aumentar a eficiência do processo de busca pelo CFPA, fez-se o uso de informações provenientes de um Algoritmo Heurístico Construtivo. Tais informações heurísticas são utilizadas na inicialização do CFPA e também na seleção de um conjunto reduzido das rotas mais relevantes à expansão, reduzindo o espaço de busca. Para aferir os resultados da metodologia proposta foram simulados os sistemas Garver, IEEE 24 Barras e o equivalente da região Sul do Brasil. Diante dos resultados, pode-se verificar que tanto a inclusão do operador de seleção clonal quanto as informações heurísticas foram capazes de aumentar a eficiência do FPA na resolução do problema aqui em estudo. / This work presents the application of a bio-inspired algorithm, together with a Heuristic Constructive Algorithm (HCA) in the solution of a power system static transmission expansion planning problem. The algorithm used is a modified version of the Flower Pollination Algorithm (FPA) that includes a clonal selection operator, from the clonal selection algorithm (CLONALG) that aims to improve the FPA local search process. The modified version proposed is entitled Clonal Flower Pollination Algorithm (CFPA). The CFPA realizes the power system transmission expansion planning, that is, it determines between a set of predefined transmission lines (circuits), which of them must be constructed in order to minimize the power systems investments and operation costs, while meeting the forecast demand in a given planning horizon. In order to increase the efficiency of the search process by the CFPA, information from an HCA has been utilized. That heuristic information has been used in the initialization process of the CFPA and also in the selection of a reduced set of most relevant lines candidates to the expansion plan, thus reducing the search space. To evaluate the results of the proposed methodology, the Garver, IEEE 24 Buses and South Brazilian Systems were simulated. Considering the results it can be verified that both the inclusion of the clonal selection algorithm and the heuristic information were able to increase the efficiency of the FPA in solving this problem.
|
3 |
Técnicas para restabelecimento de sistemas de distribuição de energia elétrica / Algorithm for service restoration in distribuiton systemsRosseti, Gustavo José Santiago 31 August 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-19T10:31:58Z
No. of bitstreams: 1
gustavojosesantiagorosseti.pdf: 1281297 bytes, checksum: 0d547bba728df4c23bbf1317541f6e39 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:44:12Z (GMT) No. of bitstreams: 1
gustavojosesantiagorosseti.pdf: 1281297 bytes, checksum: 0d547bba728df4c23bbf1317541f6e39 (MD5) / Made available in DSpace on 2016-01-25T17:44:12Z (GMT). No. of bitstreams: 1
gustavojosesantiagorosseti.pdf: 1281297 bytes, checksum: 0d547bba728df4c23bbf1317541f6e39 (MD5)
Previous issue date: 2015-08-31 / Esta tese apresenta uma metodologia para maximizar o
restabelecimento de cargas em sistema de distribuição de energia elétrica após
à ocorrência de uma ou simultâneas contingências. Para tanto, um algoritmo
heurístico construtivo é proposto, determinando passo a passo os
procedimentos operativos a serem adotados. Aspectos associados com as
restrições de radialidade e de tensão nas barras, minimização de manobras de
chaves, consumidores prioritários e mínimo corte discreto de carga são
considerados a fim de uma representação mais realista do problema. A
metodologia é aplicada em sistemas tradicionais da literatura, incluindo um
sistema real de médio porte. / This thesis presents a methodology for maximizing the load restoration in
power distribution system after simultaneous occurrence of contingency.
Therefore, a heuristic constructive algorithm is proposed to determine step by
step the operation procedures to be adopted. Aspects associated with the
radiality and bus voltage constraints, minimization of maneuvering switches,
priority consumers and minimum discrete load shedding are considered to
provide a more realistic representation of the problem. The proposed approach
is applied in traditional systems from literature including a real medium size test
system.
|
Page generated in 0.0861 seconds