1 |
METROLOGY DEVELOPMENT FOR THERMAL CHALLENGES IN ADVANCED SEMICONDUCTOR PACKAGINGAalok Uday Gaitonde (19731604) 24 September 2024 (has links)
<p dir="ltr"><i>The high heat fluxes generated in electronic devices must be effectively diffused through </i><i>the semiconductor substrate and packaging layers to avoid local, high-temperature “hotspots” </i><i>that govern long-term device reliability. In particular, advanced semiconductor packaging </i><i>trends toward thin form factor products increase the need for understanding and improving </i><i>in-plane conduction heat spreading in anisotropic materials. Furthermore, predicting thermal </i><i>transport in vertical stacks of thinned and bonded die hinges on accurately characterizing </i><i>unknown buried interfacial thermal resistances. The design of semiconductor thermal packaging </i><i>solutions is hence limited by the functionality and accuracy of metrology available </i><i>for thermal properties characterization of engineered anisotropic heat spreading materials </i><i>and buried interfaces. This work focuses on the development of two separate innovative </i><i>metrology techniques for characterizing in-plane thermal properties of both isotropic and </i><i>anisotropic materials, and the measurement of low thermal interfacial resistances embedded </i><i>in stacks of semiconductor substrates.</i></p><p dir="ltr"><i>In the first portion of this thesis, a new measurement technique is developed for characterizing </i><i>the isotropic and anisotropic in-plane thermal properties of thin films and sheets, </i><i>as an extension of the traditional Ångstrom method and other lock-in thermography techniques. </i><i>The measurement leverages non-contact infrared temperature mapping to quantify </i><i>the thermal response to laser-based periodic heating at the center of a suspended thin film </i><i>sample. This novel data extraction method does not require precise knowledge of the boundary </i><i>conditions. To validate the accuracy of this technique, numerical models are developed </i><i>to generate transient temperature profiles for hypothetical anisotropic materials with known </i><i>properties. The resultant temperature profiles are processed through a fitting algorithm to </i><i>extract the in-plane thermal conductivities, without the knowledge of the input properties </i><i>to the forward model. Across a wide range of in-plane thermal conductivities, these results </i><i>agree well with the input values. The limits of accuracy of this technique are identified based </i><i>on the experimental and sample parameters. Further, numerical simulations demonstrate </i><i>the accuracy of this technique for materials with thermal conductivities from 0.1 to 1000 W </i><i>m</i><i>−1 </i><i>K</i><i>−1</i><i>, and material thicknesses ranging from 0.1 to 10 mm. This technique effectively</i> <i>measures anisotropy ratios up to 1000:1. Data from multiple heating frequencies can be </i><i>combined to fit for a single set of thermal properties (independent of frequency), which improves </i><i>measurement sensitivity as the thermal penetration depth varies across frequencies. </i><i>The post-processing algorithm filters out regions within the laser absorber and heat sink to </i><i>eliminate regions in the sample domain with boundary effects. Based on these guidelines, </i><i>experiments demonstrate the accuracy of this measurement technique for a wide range of </i><i>known isotropic and anisotropic heat spreading materials across a thermal conductivity range </i><i>of 0.3 to 700 W m</i><i>−1 </i><i>K</i><i>−1</i><i>, and in-plane anisotropy ratios of 30:1. These steps contribute </i><i>towards standardization of this measurement technique, enabling the development and characterization </i><i>of engineered heat spreading materials with desired anisotropic properties for </i><i>various applications.</i></p><p dir="ltr"><i>The second portion of this thesis focuses on characterization of thermal resistances across </i><i>“buried” interfaces that are challenging to characterize in situ due to their low relative magnitude </i><i>and embedded depth within a material stack. In particular, we target characterization </i><i>of interfaces that are buried deeper than the thermal penetration depth of available transient </i><i>measurement techniques, such as thermoreflectance, but have low thermal resistances </i><i>that prohibit the use of steady-state techniques, such as the reference bar method, due to </i><i>the very high temperature gradients that would be necessary resolve the resistances, among </i><i>other sample preparation challenges. This work develops a technique for the non-destructive </i><i>characterization of such deeply buried interfaces having thermal contact resistances of the </i><i>order of 0.001 cm</i><i>2</i><i>K/W. Two different embodiments of the measurement approach are first </i><i>assessed before down-selecting to a single experimental implementation. The working principle </i><i>for both embodiments includes a combination of non-contact periodic heating and </i><i>thermal sensing to measure the transient temperature response of a two-layer stack of materials </i><i>with a bonded interface of unknown thermal resistance. The approaches aim to </i><i>eliminate the preparation requirement of cutting samples to investigate their temperature in </i><i>cross-section. In the first embodiment, the sample stack is heated periodically at the center </i><i>of the sample, and cooled at the periphery, to create a radial temperature gradient. The </i><i>second embodiment involves generating a one-dimensional temperature gradient across the </i><i>stack by periodic heating of one face and steady cooling of the other face. The corresponding </i><i>ing amplitude and phase delay of the temperature responses are used to fit for the thermal </i><i>interfacial resistance, assuming a time-periodic solution for the heat diffusion equation for </i><i>a system with periodic heating. Numerical models developed for both approaches simulate </i><i>the transient temperature profiles across a two-layer bonded silicon stack of known thermal </i><i>properties, and enable an assessment of both approaches. The one-dimensional (1D) gradient </i><i>approach is found to have higher sensitivity and measurable signal compared to the </i><i>radial spreading approach, at the same mean temperature of the sample. </i></p><p dir="ltr"><i>Based on this 1D gradient concept, an experimental facility is developed, which includes </i><i>a IR-transparent heat sink, laser-based heating, and two IR temperature sensors for noncontact </i><i>temperature measurement of both sides of the sample. The unique IR transparent </i><i>heat sink design allows for simultaneous cooling and non-contact temperature measurement </i><i>of the bottom surface of the sample. An inverse fitting method is developed to extract </i><i>the thermal resistances using the steady periodic temperature amplitude and phase delay </i><i>across the thickness of the material. Thermal data generated using numerical simulations, </i><i>along with the data fitting method, is first leveraged to validate the extracted thermal resistance </i><i>values for two-layer material systems with an bonded interface, as well as for the </i><i>thermal conductivity measurement of bulk materials without an interface. The data extraction </i><i>process is shown to accurately extract thermal contact resistances on the order of </i><i>0.0001 cm</i><i>2</i><i>K/W in silicon-based packages for interfaces that are a few millimeters from the </i><i>exposed surface. For bulk materials, this technique demonstrates accuracy in extracting </i><i>the thermal conductivity of a wide range of materials ranging from thermal insulators to </i><i>highly conductive materials, spanning a range of 0.1 to 2000 W m</i><i>−1 </i><i>K</i><i>−1</i><i>. Physical measurements </i><i>of thermal conductivity of bulk silicon nitride and zinc oxide agree well with expected </i><i>reference values, and these measurements also align well with data from independently performed </i><i>experiments on the same materials using an established ASTM D5470 standard, </i><i>thereby validating this new measurement technique experimentally. Two-layer dry-contact </i><i>stacks of these two materials demonstrate the extraction of the thermal resistance across </i><i>interfaces buried up to 2 mm from the exposed surface. This work contributes toward standardization </i><i>of this technique for measurement of thermal resistances with low magnitudes </i><i>and buried depths, which are commonly found in modern electronic packages, ranging from </i><i>near-junction epitaxial semiconductor films to interconnect layers in emerging die-to-die and </i><i>wafer hybrid bonding technologies.</i></p><p dir="ltr"><i>Ultimately, these measurement techniques of in-plane thermal conductivity measurement </i><i>of anisotropic materials and the interfacial contact resistance measurements across buried </i><i>interfaces offer an important contribution to the area of thermal metrology, and advance the </i><i>field of next-generation semiconductor packaging.</i></p>
|
Page generated in 0.111 seconds