• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Power Inverter EMI Characterization and Improvement by Auxiliary Resonant Snubber Inverter

Tang, Yuqing 28 January 1999 (has links)
Electromagnetic interference (EMI) is a major concern in inverter motor drive systems. The sources of EMI have been commonly identified as high switching dv/dt and di/dt rates interacting with inverter parasitic components. The reduction of parasitic components relies on highly integrated circuit layout and packaging. This is the way to deal with noise path. On the other hand, switching dv/dt and di/dt can be potentially reduced by soft-switching techniques; thus the intensity of noise source is reduced. In this paper, the relation between the dv/dt di/dt and the EMI generation are discussed. The EMI sources of a hard-switching single-phase PWM inverter are identified and measured with separation of common-mode and differential-mode noises. The noise reduction in an auxiliary resonant snubber inverter (RSI) is presented. The observation of voltage ringing and current ringing and the methods to suppress these ringing in the implementation of RSI are also discussed. The test condition and circuit layout are described as the basis of the study. And the experimental EMI spectra of both hard- and soft-switching inverter are compared. The effectiveness and limitation of the EMI reduction of the ZVT-RSI are also discussed and concluded. The control interface circuit and gate driver design are described in the appendix. The implementation of variable charging time control of the resonant inductor current is also explained in the appendix. / Master of Science

Page generated in 0.0887 seconds