• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 88
  • 17
  • 9
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 309
  • 309
  • 274
  • 138
  • 122
  • 94
  • 47
  • 42
  • 37
  • 37
  • 36
  • 32
  • 31
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The Effect of a High-Fat Diet on Bone Strain in Adult Rat Femurs

Druchok, Cheryl D. 04 1900 (has links)
<p>A high-fat diet can adversely affect bone mechanical properties, but it is unknown how these changes affect bone adaptation. Bone adaptation occurs in response to strain-related mechanisms, and strain in the bone is affected by the size and mechanical properties of the bone.The purpose of this study was to compare the strain during loading in femurs from rats fed a high-fat (HF) or normal control (NC) diet. At 3 weeks of age, male and female Wistar rats were randomly assigned to receive a NC (NC–17% fat; N=8 per gender) or HF diet (HF–41% fat; N=8 per gender) until termination (39 weeks of age). Right femurs were loaded <em>ex vivo</em> in 3-point bending to physiologic levels and mechanical strain was measured. The mechanical properties of the left femurs were determined by 3-point bend tests to failure. The dietary effects were limited in both genders. Femoral cross-sectional area properties (bone area, moment of inertia), determined from µCT scans, were significantly greater in HF femurs vs. NC for males and females. Elastic modulus was calculated from strain and deformation data and no dietary effects were seen in either gender. At the applied loads, despite significantly larger cross-sectional area properties in the HF femurs, there was no significant difference in strain between HF and NC femurs for either gender. It appears that adaptive modeling occurs during growth in the HF bones to target a predetermined level of strain to preserve bone structural integrity.</p> / Master of Applied Science (MASc)
122

Gut Microbiota-Generated Trimethylamine N-Oxide and Cardiometabolic Health in Humans

Steele, Cortney N. 29 January 2021 (has links)
There is an association between the human microbiome and disease. Gut microbes metabolize dietary sources to release trimethylamine (TMA). TMA is absorbed and then oxidized by flavin monooxygenase 3 (FMO3) to form trimethylamine N-oxide (TMAO). Elevated TMAO is associated with increased risk of cardiovascular disease and type 2 diabetes; however, the causal nature is unclear. There is also limited evidence supporting the efficacy of strategies to reduce accumulation of TMAO. Therefore, the purpose of these studies is to determine the effects of increases in TMAO on cardiometabolic health. In study 1, healthy sedentary and endurance trained males consumed a high fat diet. Blood samples were obtained in a fasted state and every hour during a 4-hour high fat challenge. We hypothesized sedentary individuals would produce higher TMAO concentrations. In study 2, healthy sedentary individuals consumed an acute 1000 mg dose of choline (CHOL) and placebo (PLC). Fasted blood samples were collected, flow-mediated dilation (FMD) and oral glucose tolerance (OGT) were measured. In study 3, healthy sedentary individuals consumed 4-wks of CHOL and PLC. Fasted blood samples were collected, FMD and OGT were measured. We hypothesized acute and 4-wk choline supplementation would impair FMD and OGT. In study 1, neither fasting (1.49± 1.2 µM vs. 2.25 ± 1.4 µM, p>0.05) or postprandial TMAO changed significantly with the HFD in sedentary or endurance trained individuals even with the endurance group consuming more TMA dietary precursors. Study 2 found increased plasma TMAO concentrations after choline supplementation on day 1(PLC; 4.14 ± 2.6 μM vs. CHOL; 23.6 ± 33.8 μM, p=0.018) and day 2 (PLC; 5.13±4.9 μM vs. CHOL; 32.6±37.5 μM, p=0.082) however, there were no differences in OGT or FMD. Study 3 found no differences in FMD or OGT following 4-wks of choline consumption. In summary, there were no differences between sedentary and endurance trained individuals fasting or post-prandial TMAO. There was also no effect on acute or 4-wk supplementation of choline on FMD and OGT. More research is needed to understand effects of elevated TMAO on cardiometabolic health. / Doctor of Philosophy / For years, research has been performed to identify the health effects of eating large amounts of red meat on cardiovascular disease (CVD). Consuming red meat, fish, poultry and eggs increases a substance created during digestion and metabolism, called trimethylamine N-oxide (TMAO). Elevated TMAO has been associated with increased risk of CVD and type 2 diabetes but the direct causes are unknown. The purpose of these studies is to determine the effects of increases in TMAO on health in humans. Study 1 included healthy, sedentary and endurance trained males who consumed a high fat diet. Blood samples were collected to measure TMAO before and after a high fat meal. Study 2 included healthy, sedentary males and females who consumed 2 days of 1000 mg of choline, which is commonly found in red meat fish and eggs, and a placebo (carbohydrate) after subjects completed a series of tests to evaluate health. Study three included healthy, sedentary males and females who consumed 4-weeks of 1000 mg of choline per day and a placebo (carbohydrate). Following supplementation subjects underwent a series of tests to assess health. Overall, there were no differences found between sedentary and endurance trained individuals. Acute and 4-week supplementation of choline did not affect measures of blood sugar or blood vessel function.
123

The Role of Maternal High Fat Diet in the Pathogenesis of Metabolic and Bone Disease in the Adult Offspring

Brenseke, Bonnie Margaret 11 January 2013 (has links)
Chronic diseases such as osteoporosis, type 2 diabetes, and cardiovascular disease are diseases of long duration, slow progression, and are by far the leading cause of death worldwide. A growing body of evidence links adverse exposures in early development with an increased risk of chronic diseases in adult life. The studies presented in this dissertation sought to exploit this phenomenon to determine the extent to which gestational and lactational exposure to a high fat diet predisposes the offspring to certain diseases in later life and if the eating habits of adult offspring would be able to mitigate or exacerbate these conditions.  In the study presented in Chapter III, dams fed an atherogenic high fat diet prior to conception and throughout gestation and lactation experienced excess hepatic lipid accumulation and poor birth outcome as characterized by smaller litter sizes and higher post-delivery mortality. In the offspring, gestational and lactational exposure to such a diet resulted in growth restriction and skeletal aberrations indicative of osteoporosis, despite being fed a standard rodent diet post-weaning. We propose that dietary-induced hyperlipidemia, along with pregnancy-associated factors, resulted in fatty liver and subsequently reduced litter sizes and increased early mortality, and that the skeletal aberrations seen in the mature offspring represent dietary-induced inhibition of osteogenesis in favor of adipogenesis. In the study presented in Chapter IV, early exposure to a high fat diet resulted in central obesity, elevated lipid levels, hyperglycemia, and additional markers used in the diagnosis of the metabolic syndrome. Altering the diets of the mature offspring demonstrated that the eating habits of adulthood have the potential to mitigate or exacerbate certain metabolic parameters established earlier in life. Mechanisms contributing to the observed metabolic aberrations could include developmental plasticity and mismatch, catch-up growth, and altered programming of the appetite regulatory network. Collectively, this research suggests that early exposure to a fat-rich diet can lead to metabolic and skeletal aberrations in the adult offspring and adds support to the developmental origins of health and disease hypothesis by finding that adverse nutritional exposures in early life can play a role in the chronic diseases of adulthood. / Ph. D.
124

Skeletal muscle autophagy and mitophagy in response to high-fat feeding and endurance training

Tarpey, Michael 13 January 2016 (has links)
Obesity is associated with reduced skeletal muscle insulin sensitivity, a major risk factor for development of type II diabetes. These metabolic diseases are commonly associated with an accumulation of mitochondrial dysfunction, which is speculated to contribute toward insulin resistance. High-fat diets reduce human skeletal muscle insulin sensitivity and mitochondrial function. Conversely, endurance training increases insulin sensitivity and enhances mitochondrial performance. Recent evidence in mice has found that central mechanisms of mitochondrial quality control, autophagy and mitophagy, may be suppressed in response to excess fat intake, but upregulated following endurance exercise training. These data may provide a mechanism for dietary and exercise-mediated regulation of mitochondrial quality and metabolic function. The current study investigated the impact of an acute high-fat diet on skeletal muscle autophagy and mitophagy in sedentary, healthy, non-obese college age males'. The expression of skeletal muscle autophagy and mitophagy protein markers were analyzed in response to a high-fat meal before and after a 5-day high-fat diet. Next, we examined the differences in skeletal muscle autophagy and mitophagy protein markers, and associations with skeletal muscle metabolic flexibility between endurance-trained male runners' and sedentary, healthy, non-obese males' following an overnight fast and in response to a high-fat meal. Autophagy markers' indicated reduced autophagy activity in response to a high-fat meal and following a high-fat diet, which exacerbated the high-fat meal response. However, these data could not be confirmed due to methodological limitations. Mitophagy markers were not significantly affected by the high-fat meal or diet. There were no significant differences in the expression of autophagy protein markers between endurance-trained and sedentary groups', but mitophagy markers were significantly elevated in endurance-trained runners'. Metabolic flexibility was not significantly different between groups' following an overnight fast or in response to a high-fat meal, and was not associated with the expression of autophagy and mitophagy protein markers. In conclusion, autophagy may be suppressed by a 5-day high-fat diet, but further analysis is required for confirmation. Endurance-trained male runners show increased markers of mitophagy, which were not associated with improved metabolic flexibility while fasted or following a high-fat meal. / Ph. D.
125

The effect of photoperiod and high fat diet on the cognitive response in photoperiod-sensitive F344 rats

McLean, Samantha, Yun, Haesung, Tedder, Andrew, Helfer, Gisela 05 July 2021 (has links)
Yes / In many species, seasonal changes in day length (photoperiod) have profound effects on physiology and behavior. In humans, these include cognitive function and mood. Here we investigated the effect of photoperiod and high fat diets on cognitive deficits, as measured by novel object recognition, in the photoperiod-sensitive F344 rat, which exhibits marked natural changes in growth, body weight and food intake in response to photoperiod. 32 male juvenile F344 rats were housed in either long or short photoperiod and fed either a high fat or nutrient-matched chow diet. Rats were tested in the novel object recognition test before photoperiod and diet intervention and re-tested 28 days after intervention. In both tests during the acquisition trials there was no significant difference in exploration levels of the left and right objects in the groups. Before intervention, all groups showed a significant increase in exploration of the novel object compared to the familiar object. However, following the photoperiod and diet interventions the retention trial revealed that only rats in the long photoperiod-chow group explored the novel object significantly more than the familiar object, whereas all other groups showed no significant preference. These results suggest that changing rats to short photoperiod impairs their memory regardless of diet. The cognitive performance of rats on long photoperiod-chow remained intact, whereas the high fat diet in the long photoperiod group induced a memory impairment. These findings suggest that rats exposed to long photoperiod have different cognitive responses to rats exposed to short photoperiod and high fat diet.
126

Photoperiod Regulates Lean Mass Accretion, but Not Adiposity, in Growing F344 Rats Fed a High Fat Diet

Ross, A.W., Russell, L., Helfer, Gisela, Thomson, L.M., Dalby, M.J., Morgan, P.J. 2015 January 1916 (has links)
Yes / In this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function. / Scottish Government (Rural and Environment Science and Analytical Services Division, http://www.scotland.gov.uk/), AWR LR LMT PJM and the BBSRC, (http://www.bbsrc.ac.uk/home/home.aspx, grant BB/K001043/1), AWR GH PJM
127

High-fat diet effects on contractile performance of isolated mouse soleus and extensor digitorum longus when supplemented with high dose vitamin D

Shelley, S.P., James, Rob S., Eustace, S.J., Eyre, E.L.J., Tallis, J. 05 January 2024 (has links)
Yes / Evidence suggests vitamin D3 (VD) supplementation can reduce accumulation of adipose tissue and inflammation and promote myogenesis in obese individuals, and thus could mitigate obesity-induced reductions in skeletal muscle (SkM) contractility. However, this is yet to be directly investigated. This study, using the work-loop technique, examined effects of VD (cholecalciferol) supplementation on isolated SkM contractility. Female mice (n = 37) consumed standard low-fat diet (SLD) or high-fat diet (HFD), with or without VD (20,000 IU/kg-1 ) for 12 weeks. Soleus and EDL (n = 8-10 per muscle per group) were isolated and absolute and normalized (to muscle size and body mass) isometric force and power output (PO) were measured, and fatigue resistance determined. Absolute and normalized isometric force and PO of soleus were unaffected by diet (P > 0.087). However, PO normalized to body mass was reduced in HFD groups (P  0.588). HFD reduced EDL isometric stress (P = 0.048) and absolute and normalized PO (P  0.493). Cumulative work during fatiguing contractions was lower in HFD groups (P  0.060). This study uniquely demonstrated that high-dose VD had limited effects on SkM contractility and did not offset demonstrated adverse effects of HFD. However, small and moderate effect sizes suggest improvement in EDL muscle performance and animal morphology in HFD VD groups. Given effect sizes observed, coupled with proposed inverted U-shaped dose-effect curve, future investigations are needed to determine dose/duration specific responses to VD, which may culminate in improved function of HFD SkM. NEW FINDINGS: What is the central question of this study? Can vitamin D supplementation alleviate detrimental effects of high-fat diet (HFD) consumption on contractile performance of isolated skeletal muscles? What is the main finding and its importance? The present study is the first to examine the synergistic effects of HFD consumption and vitamin D supplementation on the contractile performance of isolated skeletal muscle. These findings suggest high dose vitamin D has limited effects on force, power or fatigue resistance of isolated mouse soleus and extensor digitorum longus.
128

The Relationships of Age, Physical Activity Level, Adiposity, and Diet, with Human Satellite Myogenesis, and Metabolism

Fausnacht, Dane Weston 26 April 2018 (has links)
In healthy individuals, satellite cells are partly responsible for muscle repair and preventing atrophy. Previous studies have linked the loss of muscle mass associated with aging to satellite cell dysfunction, postulating that satellite cell function diminishes with age. New evidence suggests that this may not be true as satellite cells collected from healthy aged participants appear indistinguishable from their healthy young counterparts. Satellite cell dysfunction appears to be more mechanistically linked to poor lifestyle factors such as low physical activity, improper diet, and increased adiposity. For this study, satellite cell function was evaluated against the effects of aging, diet, activity level, and adiposity. Satellite cells were collected from the vastus lateralis of sedentary (<2 hours/week activity) male donors categorized into young (18-30 years) and older (60-80 years) groups, as well as a young endurance trained group (18-30 years, 5+ hours/week of running/cycling). Cells were collected in young sedentary males before and after a four-week, high fat (55% of kcal), and hypercaloric (+1000 kcal over DEE) diet (HFHCD). Cells were also subjected to an in-vitro, high substrate media (HSM) challenge, then grown in media with a fivefold increase in glucose (25 mM) and an additional 400 uM of fatty acids (2:1 palmitate:oleate) before seven days of serum starved differentiation. The cells were evaluated for their proliferation rate, ability to differentiate (fusion index), rate of reactive oxygen species (ROS) production, and capacity for substrate oxidation (glucose and fatty acid). The young group exhibited a lower proportion of body fat than the older group (22.4%±8.1 vs. 28.3%±6.3). When compared to the older group, the young group also presented elevated oxidative efficiency (68%, p<0.05) and reduced pyruvate oxidation (-60%, p<0.05) in measures of muscle tissue homogenate. However, isolated satellite cells from the young and older group demonstrated no observable differences in any measures (proliferation rate, fusion index, ROS production, or substrate oxidation), other than increased oxidative efficiency in cells from older vs. younger donors. Cells from young endurance trained donors demonstrated faster proliferation rates (39%, p<0.05) and elevated early stage fusion (33%, p<0.05) when compared to cells from older individuals. Compared to pre-diet measures, cells collected post HFHCD revealed significantly reduced proliferation rates (-19%, p<0.05). When grown in HSM (as compared to control media), cells from young lean (<25% BF) and trained participants had blunted proliferation rates (-4.8% and -12.6%, p<0.05), fusion index scores (p<0.05), and ROS production rates. Cells collected from participants with higher adiposity (>25% BF) and those collected post HFHCD experienced increased proliferation and fusion when exposed to the HSM. This data suggests that donor activity level, adiposity, and diet but not age are mediating factors for satellite cell function. The cells appear to develop a preference for their in-vivo environment, as cells collected from the leaner and trained participants had their proliferation and fusion rates reduced when exposed to HSM. Conversely, exposure to the HSM accelerated the proliferation and fusion of cells collected from donors with higher body fat and those collected post HFHCD. / PHD / The continually active nature of muscle tissue leaves it vulnerable to physical and chemical damage. Any physical activity especially exercise can cause numerous sites of micro-damage to the muscle tissue. To maintain function, damaged muscle tissue is continually remodeled throughout lifespan. To replace damaged muscle tissue, a special type of muscle specific stem cell, termed a satellite cell, is utilized. Satellite cells lay dormant inside the muscle tissue until their activity is promoted by signals that result from muscle injury. Once activated, satellite cells develop into new muscle cells, a process known as myogenesis. Proper function of satellite cells is required for our muscle tissue to respond to injury. Past studies have demonstrated that aging adversely impacts satellite cell activity, which is thought to contribute to loss of muscle mass and strength typically observed with aging. However, newer evidence suggest that an unhealthy diet and a sedentary lifestyle may contribute to satellite cell dysfunction. This study studied satellite cell function to determine if aging, sedentary life style, and unhealthy diet contributed to satellite cell dysfunction. The results demonstrated that age had no effect on any measures of satellite cell function. Findings suggested that a sedentary lifestyle resulted in diminished satellite cell function regardless of age. This study demonstrated that four weeks on a high-fat/high-calorie “western style” diet decreased satellite cell function. It was also demonstrated that exposing satellite cells to a high-sugar/high-fat treatment altered their cellular function. These data suggest that alterations in macronutrient content of a person’s diet may adversely impact satellite cell function, and decrease the potential for myogenesis. In conclusion aging had no effect satellite cell function. A high-fat/high-calorie diet and sedentary lifestyle did contribute to satellite cell dysfunction. It appears that the loss of muscle mass and strength observed in aged individuals is not associated with satellite cell function.
129

Skeletal muscle metabolic adaptations in response to an acute high fat diet

Bowser, Suzanne Mae 05 February 2018 (has links)
Macronutrient metabolism plays an essential role in the overall health of an individual. Depending on a number of variables, for example, diet, fitness level, or metabolic disease state, protein, carbohydrate and fat have varying capacities to be oxidized and balanced. Further, when analyzing the oxidation of carbohydrate and fat in the skeletal muscle specifically, carbohydrate balance happens quite rapidly, while fat balance does not. The ability of skeletal muscle to adapt and respond to various nutrient states is critical to maintaining healthy metabolic function. Habitual high fat intake has been associated with reduced oxidative capacity, insulin resistance, increased gut permeability, inflammation, and other risk factors often preceding metabolic disease states. The disruption of gut function leads to gut permeability and increases endotoxins released into circulation. Endotoxins have been shown to play an important role in obesity-related whole body and tissue specific metabolic perturbations. Each of these disrupted metabolic processes is known to associate with obesity, metabolic syndrome and diabetes. To date, limited research has investigated the role of high fat diet on skeletal muscle substrate oxidation and its relationship to gut permeability and endotoxins. The purpose of this study was to determine the effects of an acute, five-day, isocaloric high fat diet (HFD) on skeletal muscle substrate metabolism in healthy non-obese humans. An additional purpose was to determine the effects of a HFD on gut permeability and blood endotoxins on healthy, non-obese, sedentary humans. Thirteen college age males were fed a control diet for two weeks, followed by five days of an isocaloric HFD. To assess the effects of a HFD on skeletal muscle metabolic adaptability and postprandial endotoxin levels, subjects underwent a high fat meal challenge before and after a HFD. Muscle biopsies were obtained; blood was collected; insulin sensitivity was assessed via intravenous glucose tolerance test; and intestinal permeability was assessed via the four-sugar probe test before and after the HFD. Postprandial glucose oxidation and fatty acid oxidation in skeletal muscle increased before the HFD intervention but was decreased after. Skeletal muscle in vitro assay of metabolic flexibility was significantly blunted following the HFD. Insulin sensitivity and intestinal permeability were not affected by HFD, but fasting endotoxin was significantly higher following the HFD. These findings demonstrate that in young, healthy males, following five days of an isocaloric high fat diet, skeletal muscle metabolic adaptation is robust. Additionally, increased fasting endotoxin independent of gut permeability changes are potentially a contributor to the inflammatory state that disrupts substrate oxidation. These findings suggest that even short-term changes in dietary fat consumption have profound effects on skeletal muscle substrate metabolism and fasting endotoxin levels, independent of positive energy balance and whole-body insulin sensitivity. / Ph. D. / Macronutrients, namely carbohydrates, fats and protein, and the way they are utilized play an important role in the overall health of an individual. Many variables come into play when considering the oxidization (or utilization) of each macronutrient, including, but not limited to diet, fitness level, and metabolic disease state. Skeletal muscle and its role in these processes is of special interest as it is the largest insulin sensitive organ in the body. Its ability to adapt and respond to various nutrient states is critical to maintaining healthy metabolic function. Habitual high fat intake has been associated with insulin resistance, increased gut permeability (increasing endotoxins, which are toxins released into circulation from the intestines), reduced oxidative capacity (ability to utilize macronutrients for energy), and inflammation, all of which are risk factors that precede metabolic disease states. To date, limited research has investigated the role of high fat diet on skeletal muscle oxidation of macronutrients and its relationship to what is going on in the gut, or intestines. The purpose of the study was to determine the effects of a short term high fat diet (five days) on skeletal muscle in healthy, non-obese humans, and to determine the effects of this diet on gut permeability and endotoxins. Thirteen college-age males were fed a control diet for two weeks followed by five days of a high fat diet. Each diet had the same caloric content. Subjects underwent a high fat meal challenge before and after the diet to assess the effects of the diet on skeletal muscle adaptability and post meal endotoxin levels. Before and after the high fat diet, muscle biopsies were obtained, blood was collected, insulin sensitivity was assessed and gut permeability was measured. We found that skeletal muscle metabolic adaptation is robust. Additionally, increased fasting endotoxin changes are a possible contributor to the inflammatory state that disrupts macronutrient oxidation. Therefore, even short-term changes in dietary fat consumption have profound effects on skeletal muscle metabolism and fasting endotoxin levels, independent of positive energy balance and whole-body insulin sensitivity.
130

Effect and Mechanisms of Action of Intestinal Bacteria and Bioactive Compounds on the Immune System and Metabolism in Obesity Models

Liébana García, Rebeca 01 December 2025 (has links)
Tesis por compendio / [ES] La obesidad representa un importante reto para la salud pública debido a su elevada prevalencia y a las comorbilidades asociadas. Las dietas hipercalóricas activan el sistema inmunitario intestinal y alteran la microbiota intestinal causando daños metabólicos en el organismo. De hecho, la pérdida de homeostasis inmunológica intestinal se considera un evento que precede a la aparición de la inflamación sistémica de bajo grado asociada a la obesidad. Dado que la microbiota intestinal es un factor modificable, su modulación puede convertirse en una oportunidad para reducir el impacto de la obesidad. Por ello la identificación de los factores que participan en la respuesta inflamatoria a las dietas obesogénicas y la búsqueda de alternativas terapéuticas basadas en la microbiota constituyen una vía de investigación prometedora para combatir la obesidad. Esta Tesis Doctoral evalúa el potencial de nuevos probióticos y estrategias dietéticas para combatir la obesidad basadas en sus propiedades inmunomoduladoras. En el Primer Capítulo investigamos el potencial anti-obesogénico del propil propano tiosulfinato (PTS), un compuesto organosulfurado derivado de la especie Allium, en dos dosis diferentes (0,1 o 1 mg/kg/día) utilizando un modelo murino de obesidad inducida por la dieta (DIO). Nuestros hallazgos demostraron los efectos protectores de PTS frente a la obesidad, ya que su administración redujo el peso corporal y mejoró la homeostasis de glucosa. En el tejido adiposo y el hígado, PTS redujo la inflamación y el metabolismo lipídico aberrante causado por la dieta obesogénica. Además, PTS incrementó la actividad termogénica en el tejido adiposo marrón y reforzó la función barrera intestinal. En vista de los modestos cambios en el ecosistema microbiano intestinal, concluimos que estos efectos no eran mediados por la microbiota. En el Segundo Capítulo evaluamos el potencial anti-obesogénico y el mecanismo de acción de una nueva bacteria llamada Phascolarctobacterium faecium DSM 32890. Para ello, realizamos diferentes experimentos in vitro e in vivo usando diferentes cultivos celulares (macrófagos derivados de médula ósea y células linfoides innatas intestinales del grupo 1 (LC1s)) y modelos murinos DIO (ratones C57BL/6J y Rag1-/-). El tratamiento de ratones alimentados con una dieta hipercalórica con P. faecium incrementó la proporción de los macrófagos M2 en el intestino, lo que contrarrestó el aumento de ILC1s y, en última instancia, mitigó la intolerancia a la glucosa y el aumento de peso corporal, independientemente de la viabilidad de la bacteria. Además, P. faecium reforzó la función barrera intestinal y evitó la inflamación sistémica causada por la dieta hipercalórica. Estos beneficios metabólicos se mantuvieron en ausencia de inmunidad adaptativa, pero se perdieron cuando la bacteria se coadministró con un inhibidor (GW2580) de la polarización de macrófagos M2. Por último, realizamos un amplio estudio con datos metagenómicos de 6.361 personas que mostró una relación inversa entre P. faecium y la obesidad, independientemente de la nacionalidad, el sexo o la edad, lo que sugiere la asociación de esta bacteria con la salud metabólica. En el Tercer Capítulo, investigamos la implicación de las ILC1s intestinales en la progresión de la obesidad y las alteraciones metabólicas asociadas. Para ello, evaluamos longitudinalmente la respuesta de las ILC1s y las consecuencias su depleción de ILC1s en un modelo murino DIO. En el intestino, el bloqueo de ILC1s evitó el aumento de macrófagos M1 e ILC2s y promovió la activación de la vía ILC3-IL22, aumentando la producción de mucina, la expresión de péptidos antimicrobianos y el número de células neuroendocrinas. Además, el bloqueo de ILC1s restableció el perfil microbiano y el metaboloma, acercándose al perfil asociado con la salud metabólica. En última instancia, estas mejoras se asociaron con una mayor secreción de hormonas intestinales, y una reducción de la insulinemia y la adiposidad. / [CA] L'obesitat és un repte per a la salut pública degut a la elevada prevalença i les comorbiditats. Les dietes hipercalòriques activen el sistema immunitari intestinal i alteren la microbiota intestinal causant danys metabòlics en l'organisme. De fet, la pèrdua d'homeòstasi immunològica a escala intestinal es considera un esdeveniment primerenc que precedeix l'aparició de la inflamació sistèmica de baix grau associada a l'obesitat. Atés que la microbiota intestinal és un factor modificable, la seua modulació pot convertir-se en una oportunitat per a reduir l'impacte de l'obesitat. Per això, la identificació dels factors que participen en la resposta inflamatòria a les dietes obesogèniques i la recerca d'alternatives terapèutiques basades en la microbiota son una via d'investigació prometedora per a combatre l'obesitat. Aquesta Tesi Doctoral avalua el potencial de nous probiòtics i estratègies dietètiques per a combatre l'obesitat basada en propietats immunomoduladores. En el Primer Capítol investiguem el potencial anti-obesogènic del propil propà tiosulfat (PTS), un compost organosulfurat derivat de l'espècie Allium, en dues dosis diferents (0,1 o 1 mg/kg/dia) utilitzant un model murí d'obesitat induïda per la dieta. Els resultats demostren els efectes protectors de PTS enfront a l'obesitat, ja que la seua administració va reduir el pes corporal i va millorar l'homeòstasi de glucosa. En el teixit adipós i el fetge, PTS va prevenir l'augment de la resposta inflamatòria i les alteracions del metabolisme lipídic causades per la dieta hipercalòrica. A més, PTS va incrementar l'activitat termogènica en el teixit adipós marró i millorà la funció barrera intestinal alterats per la dieta. Observàrem canvis modestos en la microbiota intestinal, concloent que els efectes no estan mediats de manera significativa per la microbiota. En el Segon Capítol avaluem el potencial anti-obesogènic i el mecanisme d'acció d'un nou bacteri Phascolarctobacterium faecium DSM 32890. Hem realitzat experiments in vitro i in vivo utilitzant diferents cultius cel·lulars (macròfags derivats de medul·la òssia i de cèl·lules limfoides innates intestinals del grup 1 (LC1s) i models murins d'obesitat induïda per la dieta (ratolins C57BL/6J, i Rag1-/- ). El tractament de ratolins alimentats amb una dieta hipercalòrica amb P. faecium incrementà la proporció dels macròfags M2 a l'intestí, contrarestant l'augment d'ILC1s i en última instància, mitigà la intolerància a la glucosa i l'augment del pes corporal, independentment de la viabilitat del bacteri. A més, P. faecium reforçà la funció bacterial intestinal i evità la inflamació sistèmica causada per la dieta hipercalòrica. Aquests beneficis metabòlics es mantenien en absència d'immunitat adaptativa, però es perderen quan el bacteri es coadministrà amb un inhibidor (GW2580) de la polarització de macròfags M2. Finalment, realitzàrem un ampli estudi amb dades metagenòmiques de 6.361 persones que mostrà una relació inversa entre P. faecium i l'obesitat, independentment de la nacionalitat, el sexe o l'edat, suggerint l'associació d'aquest bacteri amb la salut metabòlica. En el Tercer Capítol, investiguem la implicació de les ILC1s residents en l'intestí en la progressió de l'obesitat i les alteracions metabòliques associades. Evaluàrem longitudinalment la resposta de les ILC1s i les conseqüències de la depleció de ILC1s en un model murí d'obesitat. A l'intestí, el bloqueig de ILC1s va evitar l'augment de macròfags M1 i ILC2s, i va promoure l'activació de la via ILC3-IL22, augmentant la producció de mucina, l'expressió de pèptids antimicrobians i el nombre de cèl·lules neuroendocrines. El bloqueig de ILC1s va restablir la microbiota i el seu metaboloma, similar a l'estat saludable. Aquestes millores es van associar amb una major secreció d'hormones intestinals, i una reducció de la insulinèmia i l'adipositat. / [EN] Obesity is a major public health challenge due to its high prevalence, and association with metabolic comorbidities. Hypercaloric diets are known to overactivate the intestinal immune system and disrupt the microbiome, ultimately causing detrimental metabolic effects. The loss of intestinal immune homeostasis is considered an early step preceding the development of systemic low-grade inflammation associated with obesity and metabolic complications. In this regard, extensive evidence supports that the gut microbiome may be modified favorable and, thus, help to ameliorate these conditions. Hence, identifying factors triggering the low-grade inflammation and microbiome-base solutions to reduce the obesity burden represent promising avenues of research. This Doctoral Thesis aims to advance the knowledge and provide novel probiotics and dietary strategies to combat the burden of obesity based on their immunomodulatory properties to shape the metabolic response to the diet. In the First Chapter, we have investigated the anti-obesogenic potential of propyl propane thiosulfinate (PTS), an organo-sulfur compound derived from Allium species, at two different doses (0.1 or 1 mg/kg/day) using a murine model of diet-induced obesity (DIO). Our preclinical findings showed the protective effects of PTS against obesity, reducing body weight gain and maintaining glucose homeostasis, thus suggesting its potential to ameliorate the impact of the HFHSD. In the adipose tissue and the liver, PTS reduced inflammation and the aberrant lipid metabolism caused by the obesogenic diet. Additionally, PTS promoted thermogenic activity in the brown adipose tissue and enhance intestinal gut barrier defense. In view of the modest changes in the microbial ecosystem, we concluded that the effects of PTS were not mediated by the gut microbiota. In the Second Chapter, we have evaluated the anti-obesogenic potential and the mechanism of action of the new intestinal strain, Phascolarctobacterium faecium DSM 32890, isolated in our laboratory from a healthy volunteer. To that aim, we have performed different in vitro and in vivo experiments, including the use of different types of cell cultures (bone marrow-derived macrophages and group 1 of innate lymphoid cells (ILC1s)) and DIO murine models (wild-type C57BL/6J and Rag1-/- mice). Treatment of HFHSD-fed mice with P. faecium, regardless of its viability, shifted the macrophage phenotype towards an M2-type, which counteracted the obesity-induced increase in gut-resident ILC1s and ultimately mitigated glucose intolerance and body weight gain. Moreover, P. faecium treatment prevented systemic inflammation, boosted secretory immunoglobulin A production and induced antimicrobial peptide and interleukin 22 expression. These metabolic benefits were maintained in the absence of an adaptive immune system but were lost when the bacterium was co-administered with an inhibitor (GW2580) of M2 macrophage polarization. We confirmed that P. faecium was more prevalent in the gut metagenomes of non-obese adults regardless of nationality, sex or age, suggesting that it might contribute to safeguard metabolic health in humans. In the Third Chapter, we have investigated the involvement of gut-resident ILC1s in obesity progression and metabolic disruption. To address this goal, we evaluated longitudinally, in a DIO murine model, the ILC1s response to an obesogenic diet and the consequences of the ILC1s depletion. In the intestine, ILC1s depletion blunted the increases in M1 macrophages and ILC2s. Additionally, ILC1s depletion promoted the ILC3-IL22 pathway, increasing mucin production, the expression of antimicrobial gut peptides, and the number of neuroendocrine cells. Moreover, ILC1s depletion restored microbial and metabolomic profiles, resembling those associated with a healthy symbiotic state. The improvements in gut homeostasis were linked to a higher gut hormone secretion, and reduced insulinemia and adiposity. / Rebeca Liébana García has been beneficiary of an FPU contract (FPU 18/02026) and a mobility grant (EST22/00430) from Spanish Ministry of Universities. The experimental work conduced in this Doctoral Thesis has been funded by the Spanish Ministry of Science and Innovation (MICINN AGL2017-88801-P, PID2020-119536RB-I00), the Centre for the Development of Industrial Technology (CDTI, Ref 20170847), and the EU H2020 Marie Sklodowska Curie Actions (MSCA-IF “MicroILCs, GA: 8905454). / Liébana García, R. (2023). Effect and Mechanisms of Action of Intestinal Bacteria and Bioactive Compounds on the Immune System and Metabolism in Obesity Models [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/201910 / Compendio

Page generated in 0.0274 seconds