• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of a hydraulically actuated mechanism using a proportional valve and a linearizing feedforward controller

Dobchuk, Jeffery William 25 August 2004
A common problem encountered in mobile hydraulics is the desire to automate motion control functions in a restricted-cost and restricted-sensor environment. In this thesis a solution to this problem is presented. A velocity control scheme based on a novel single component pressure compensated ow controller was developed and evaluated. <p> The development of the controller involved solving several distinct technical challenges. First, a model reference control scheme was developed to provide control of the valve spool displacement for a particular electrohydraulic proportional valve. The control scheme had the effect of desensitizing the transient behaviour of the valve dynamics to changes in operating condition. Next, the pressure/flow relationship of the same valve was examined. A general approach for the mathematical characterization of this relationship was developed. This method was based on a modification of the so-called turbulent orifice equation. The general approach included a self-tuning algorithm. Next, the modified turbulent orifice equation was applied in conjunction with the model reference valve controller to create a single component pressure compensated flow control device. This required an inverse solution to the modified orifice equation. Finally, the kinematics of a specific single link hydraulically actuated mechanism were solved. Integration of the kinematic solution with the flow control device allowed for predictive velocity control of the single link mechanism.
2

Control of a hydraulically actuated mechanism using a proportional valve and a linearizing feedforward controller

Dobchuk, Jeffery William 25 August 2004 (has links)
A common problem encountered in mobile hydraulics is the desire to automate motion control functions in a restricted-cost and restricted-sensor environment. In this thesis a solution to this problem is presented. A velocity control scheme based on a novel single component pressure compensated ow controller was developed and evaluated. <p> The development of the controller involved solving several distinct technical challenges. First, a model reference control scheme was developed to provide control of the valve spool displacement for a particular electrohydraulic proportional valve. The control scheme had the effect of desensitizing the transient behaviour of the valve dynamics to changes in operating condition. Next, the pressure/flow relationship of the same valve was examined. A general approach for the mathematical characterization of this relationship was developed. This method was based on a modification of the so-called turbulent orifice equation. The general approach included a self-tuning algorithm. Next, the modified turbulent orifice equation was applied in conjunction with the model reference valve controller to create a single component pressure compensated flow control device. This required an inverse solution to the modified orifice equation. Finally, the kinematics of a specific single link hydraulically actuated mechanism were solved. Integration of the kinematic solution with the flow control device allowed for predictive velocity control of the single link mechanism.

Page generated in 0.0834 seconds