311 |
Singular integration with applications to boundary value problemsKaye, Adelina E. January 1900 (has links)
Master of Science / Mathematics / Nathan Albin / Pietro Poggi-Corradini / This report explores singular integration, both real and complex, focusing on the the Cauchy type integral, culminating in the proof of generalized Sokhotski-Plemelj formulae and the applications of such to a Riemann-Hilbert problem.
|
312 |
Non-Linear Electromechanical System DynamicsGanapathy Annadurai, Shathiyakkumar 16 May 2014 (has links)
Electromechanical systems dynamics analysis is approached through nonlinear differential equations and further creating a state space model for the system. There are three modules analyzed and validated, first module consists two magnet coupled with a mass spring damper system as a band-pass system, Low-pass equivalent system and Low-pass equivalent system through perturbation analysis. Initially Band Pass frameworks for the systems are formulated considering the relation between the mechanical forcing and current. Using Mathematical tools such as Hilbert transforms, Low-Pass equivalent of the systems are derived. The state equations of the systems are then used to design a working model in MATLAB and simulations investigated completely. The scope of the modules discussed for further development of tools various applications.
|
313 |
Método do averaging para sistemas de Filippov / Averaging method for Filippov systemsRodrigues, Camila Aparecida Benedito 20 February 2015 (has links)
Um dos mais investigados problemas na teoria qualitativa dos sistemas dinâmicos no plano é o XVI problema de Hilbert que investiga uma cota superior para o número de ciclos limites em sistemas diferenciais polinomiais e suas posições relativas. Por outro lado, os sistemas diferenciais suaves por partes tem despertado o interesse de muitos pesquisadores recentemente devido a sua estreita relação com outras áreas das ciências como física, biologia, economia e engenharias. Portanto é natural a busca pela extensão das técnicas e ferramentas da teoria qualitativa para essa classe de sistemas. Nessa dissertação apresentamos uma generalização da técnica do averaging para uma classe especial dos sistemas de Filippov, conhecida como sistemas diferenciais contínuos por partes, desenvolvida por Llibre-Novaes-Teixeira e, aplicamos essa técnica na investigação de uma classe particular de sistemas, que chamamos do tipo Kukles generalizado. / One of the most investigated problems in the qualitative theory of dynamical systems in the plane is the XVI Hilbert\'s problem which asks for the maximum number and position of limity cycles for all planar polynomial differential systems of degree n. On the other hand, recently piecewise continuous differential systems have attracting the interest of many researches specially because of their close relation with other sciences for instance physics, biology, economy and engineering. These relations motivate extensions of the qualitative tools for this class of systems. In this work we present a generalization of the averaging theory for a class of Filippov systems, namely piecewise continuous differential systems, developed by Llibre-Novaes-Teixeira and, we apply this theory to a particular class of differential systems, which we nominate generalized Kukles type.
|
314 |
Uma introdução às derivações localmente nilpotentes com uma aplicação ao 14º problema de Hilbert / An introduction to the locally nilpotent derivations with an application to the Hilbert\'s 14th problemMerighe, Liliam Carsava 30 March 2015 (has links)
O principal objetivo desta dissertação é estudar um contraexemplo para o Décimo Quarto Problema de Hilbert no caso de dimensão n = 5, que foi apresentado por Arno van den Essen ([6]) em 2006 e que é baseado em um contraexemplo de D. Daigle e G. Freudenburg ([4]). Para isso, serão estudados os conceitos fundamentais da teoria de derivações e os princípios básicos das derivações localmente nilpotentes, bem como seus respectivos corolários. Dentre esses princípios encontra-se o Princípio 13, que garante que, se B é uma k- álgebra polinomial, digamos B = k[x1; ..., xn], (onde k é um corpo de característica zero) e D é uma derivação localmente nilpotente sobre B, então seu núcleo A = ker D satisfaz A = B &cap: Frac(A). Assim encontramos o contraexemplo esperado, ao mostrar que A não é finitamente gerado sobre k. Além disso, no apêndice deste trabalho, é dada uma prova para o caso de dimensão 1 do Décimo Quarto Problema de Hilbert. / The main objective of this thesis is to study a counterexample to the Hilberts Fourteenth Problem in dimension n = 5, which was presented by Arno van den Essen ([6]) in 2006 and that is based on a counterexample of D. Daigle and G. Freudenburg ([4]). For these purpose, we study the fundamental concepts of the theory of derivations and the basic principles of locally nilpotent derivations and their corollaries. Among these principles, Principle 13 ensures that if B is a k-algebra polynomial, say B = k[x1; ..., xn], (where k is a field of characteristic zero) and D is a locally nilpotent derivation on B, then its kernel A = ker D satisfies A = B ∩ Frac(A). Once we have proved that A is not finitely generated over k, we find the expected counterexample. In addition, in the appendix of this work is given a proof for the Hilberts Fourteenth Problemin dimension n = 1.
|
315 |
Universal D-modules, and factorisation structures on Hilbert schemes of pointsCliff, Emily Rose January 2015 (has links)
This thesis concerns the study of chiral algebras over schemes of arbitrary dimension n. In Chapter I, we construct a chiral algebra over each smooth variety X of dimension n. We do this via the Hilbert scheme of points of X, which we use to build a factorisation space over X. Linearising this space produces a factorisation algebra over X, and hence, by Koszul duality, the desired chiral algebra. We begin the chapter with an overview of the theory of factorisation and chiral algebras, before introducing our main constructions. We compute the chiral homology of our factorisation algebra, and show that the D-modules underlying the corresponding chiral algebras form a universal D-module of dimension n. In Chapter II, we discuss the theory of universal D-modules and OO- modules more generally. We show that universal modules are equivalent to sheaves on certain stacks of étale germs of n-dimensional varieties. Furthermore, we identify these stacks with the classifying stacks of groups of automorphisms of the n-dimensional disc, and hence obtain an equivalence between the categories of universal modules and the representation categories of these groups. We also define categories of convergent universal modules and study them from the perspectives of the stacks of étale germs and the representation theory of the automorphism groups.
|
316 |
Um estudo sobre a teoria de Sturm-Liouville /Souza, Valterlan Atanasio de. January 2016 (has links)
Orientador: Marta Cilene Gadotti / Banca: Suzete Maria Silva Afonso / Banca: Katia Andreia Gonçalves de Azevedo / Resumo: Este texto aborda os principais resultados sobre a Teoria de Sturm-Liouville assim como os pré-requisitos necessários para construí-los, entre eles o Teorema Espectral para Operadores Compactos e a Teoria de Fredholm. Também são apresentados alguns exemplos e uma aplicação envolvendo uma equação diferencial parcial que modela o problema da corda vibrante / Abastract: This research approaches the main results on the Sturm-Liouville Theory, as well the necessary prerequisites for constructing them, including the Spectral Theorem for Compact Operators and Fredholm Theory. It is also presented some examples and an application involving a partial differential equation that models the vibrating string problem / Mestre
|
317 |
The Complete Structure of Linear and Nonlinear Deformations of Frames on a Hilbert SpaceAgrawal, Devanshu 01 May 2016 (has links)
A frame is a possibly linearly dependent set of vectors in a Hilbert space that facilitates the decomposition and reconstruction of vectors. A Parseval frame is a frame that acts as its own dual frame. A Gabor frame comprises all translations and phase modulations of an appropriate window function. We show that the space of all frames on a Hilbert space indexed by a common measure space can be fibrated into orbits under the action of invertible linear deformations and that any maximal set of unitarily inequivalent Parseval frames is a complete set of representatives of the orbits. We show that all such frames are connected by transformations that are linear in the larger Hilbert space of square-integrable functions on the indexing space. We apply our results to frames on finite-dimensional Hilbert spaces and to the discretization of the Gabor frame with a band-limited window function.
|
318 |
Extension of positive definite functionsNiedzialomski, Robert 01 May 2013 (has links)
Let $\Omega\subset\mathbb{R}^n$ be an open and connected subset of $\mathbb{R}^n$. We say that a function $F\colon \Omega-\Omega\to\mathbb{C}$, where $\Omega-\Omega=\{x-y\colon x,y\in\Omega\}$, is positive definite if for any $x_1,\ldots,x_m\in\Omega$ and any $c_1,\ldots,c_m\in \mathbb{C}$ we have that $\sum_{j,k=1}^m F(x_j-x_k)c_j\overline{c_k}\geq 0$.
Let $F\colon\Omega-\Omega\to\mathbb{C}$ be a continuous positive definite function. We give necessary and sufficient conditions for $F$ to have an extension to a continuous and positive definite function defined on the entire Euclidean space $\mathbb{R}^n$. The conditions are formulated in terms of strong commutativity of some certain selfadjoint operators defined on a Hilbert space associated to our positive definite function.
|
319 |
Currents- and varifolds-based registration of lung vessels and lung surfacesPan, Yue 01 December 2016 (has links)
This thesis compares and contrasts currents- and varifolds-based diffeomorphic image registration approaches for registering tree-like structures in the lung and surface of the lung. In these approaches, curve-like structures in the lung—for example, the skeletons of vessels and airways segmentation—and surface of the lung are represented by currents or varifolds in the dual space of a Reproducing Kernel Hilbert Space (RKHS). Currents and varifolds representations are discretized and are parameterized via of a collection of momenta. A momenta corresponds to a line segment via the coordinates of the center of the line segment and the tangent direction of the line segment at the center. A momentum corresponds to a mesh via the coordinates of the center of the mesh and the normal direction of the mesh at the center. The magnitude of the tangent vector for the line segment and the normal vector for the mesh are the length of the line segment and the area of the mesh respectively.
A varifolds-based registration approach is similar to currents except that two varifolds representations are aligned independent of the tangent (normal) vector orientation. An advantage of varifolds over currents is that the orientation of the tangent vectors can be difficult to determine
especially when the vessel and airway trees are not connected. In this thesis, we examine the image registration sensitivity and accuracy of currents- and varifolds-based registration as a function of the number and location of momenta used to represent tree like-structures in the lung and the surface of the lung. The registrations presented in this thesis were generated using the Deformetrica software package, which is publicly available at www.deformetrica.org.
|
320 |
Eigenvalues and Approximation NumbersChakmak, Ryan 01 January 2019 (has links)
While the spectral theory of compact operators is known to many, knowledge regarding the relationship between eigenvalues and approximation numbers might be less known. By examining these numbers in tandem, one may develop a link between eigenvalues and l^p spaces. In this paper, we develop the background of this connection with in-depth examples.
|
Page generated in 0.061 seconds