501 |
Algèbres à factorisation et Topos supérieurs exponentiables / Factorisation Algebra and Exponentiable Higher ToposesLejay, Damien 23 September 2016 (has links)
Cette these est composee de deux parties independantes ayant pour point commun l’utilisation intensive de la theorie des ∞-categories. Dans la premiere, on s’interesse aux liens entre deux approches differentes de la formalisation de la physique des particules : les algebres vertex et les algebres a factorisation a la Costello. On montre en particulier que dans le cas des theories dites topologiques, elles sont equivalentes. Plus precisement, on montre que les∞-categories de fibres vectoriels factorisant non-unitaires sur une variete algebrique complexe lisse X est equivalente a l’∞-categorie des EM-algebres non-unitaires et de dimension finie, ou M est la variete topologique associee a X. Dans la seconde, avec Mathieu Anel, nous etudions la caracterisation de l’exponentiabilite dans l’∞-categorie des ∞-topos. Nous montrons que les ∞-topos exponentiables sont ceux dont l’∞-categorie de faisceaux est continue. Une consequence notable est que l’∞-categorie des faisceaux en spectres sur un ∞-topos exponentiable est un objet dualisable de l’∞-categorie des ∞-categories cocompletes stables munie de son produit tensoriel. Ce chapitre contient aussi une construction des ∞-coends a partir de la theorie du produit tensoriel d’∞- categories cocompletes, ainsi qu’une description des ∞-categories de faisceaux sur un ∞-topos exponentiable en termes de faisceaux de Leray. / This thesis is made of two independent parts, both relying heavily on the theory of ∞-categories. In the first chapter, we approach two different ways to formalize modern particle physics, through the theory of vertex algebras and the theory of factorisation algebras a la Costello. We show in particular that in the case of ‘topological field theories’, they are equivalent. More precisely, we show that the ∞-category of non-unital factorization vector bundles on a smooth complex variety X is equivalent to the ∞-category of non-unital finite dimensional EM-algebras where M is the topological manifold associated to X. In the second one, with Mathieu Anel, we study a characterization of exponentiable objects of the∞-category of∞-toposes.We show that an ∞-topos is exponentiable if and only if its ∞-category of sheaves of spaces is continuous. An important consequence is the fact that the ∞-category of sheaves of spectra on an exponentiable ∞-topos is a dualisable object of the ∞-category of cocontinuous stable ∞-categories endowed with its usual tensor product. This chapter also includes a ix construction of∞-coends from the theory of tensor products of cocomplete∞- categories, together with a description of∞-categories of sheaves on exponentiable ∞-toposes in terms of Leray sheaves.
|
502 |
Formes modérément ramifiées de polydisques fermés et de dentelles / Tamely ramified forms of closed polydiscs and lacesChapuis, Marc 14 December 2017 (has links)
Soit $k$ un corps ultramétrique complet, $L$ une extension galoisienne finie modérément ramifiée de $k$ et $X$ un espace $k$-analytique. Nous montrons que $X$ est isomorphe à un $k$-polydisque fermé (resp. une $k$-dentelle) si et seulement si $X_L$ est isomorphe à un $L$-polydisque fermé (resp. une $L$-dentelle) sur lequel l'action de $\Gal(L/k)$ est raisonnable. Nous montrons que $X$ est isomorphe à un $k$-bidisque fermé si et seulement si $X_L$ est isomorphe à un $L$-bidisque fermé. Dans le cadre de l'algèbre graduée: on calcule le premier ensemble pointé de cohomologie du groupe linéaire et des automorphismes du plan. / Let $k$ be a complete non-Archimedean field, $L$ a finite tamely ramified galoisian extension of $k$ and $X$ a $k$-analytic space. We show that $X$ is isomorphic to a closed $k$-polydisc (resp. a $k$-lace) if and only if $X_L$ is isomorphic to a closed $L$-polydisc (resp. a $L$-lace) on which the action of $\Gal(L/k)$ is reasonable. We show that $X$ is isomorphic to a closed $k$-bidisc if and only if $X_L$ is isomorphic to a closed $k$-bidisc. In the formalism of graduated algebra : we calculate the first pointed cohomology set of the general linear group and of the automorphisms of the plane.
|
503 |
Uniqueness Results for the Infinite Unitary, Orthogonal and Associated GroupsAtim, Alexandru Gabriel 05 1900 (has links)
Let H be a separable infinite dimensional complex Hilbert space, let U(H) be the Polish topological group of unitary operators on H, let G be a Polish topological group and φ:G→U(H) an algebraic isomorphism. Then φ is a topological isomorphism. The same theorem holds for the projective unitary group, for the group of *-automorphisms of L(H) and for the complex isometry group. If H is a separable real Hilbert space with dim(H)≥3, the theorem is also true for the orthogonal group O(H), for the projective orthogonal group and for the real isometry group. The theorem fails for U(H) if H is finite dimensional complex Hilbert space.
|
504 |
Ensemblový Kalmanův filtr na prostorech velké a nekonečné dimenze / Ensemble Kalman filter on high and infinite dimensional spacesKasanický, Ivan January 2017 (has links)
Title: Ensemble Kalman filter on high and infinite dimensional spaces Author: Mgr. Ivan Kasanický Department: Department of Probability and Mathematical Statistics Supervisor: doc. RNDr. Daniel Hlubinka, Ph.D., Department of Probability and Mathematical Statistics Consultant: prof. RNDr. Jan Mandel, CSc., Department of Mathematical and Statistical Sciences, University of Colorado Denver Abstract: The ensemble Kalman filter (EnKF) is a recursive filter, which is used in a data assimilation to produce sequential estimates of states of a hidden dynamical system. The evolution of the system is usually governed by a set of di↵erential equations, so one concrete state of the system is, in fact, an element of an infinite dimensional space. In the presented thesis we show that the EnKF is well defined on a infinite dimensional separable Hilbert space if a data noise is a weak random variable with a covariance bounded from below. We also show that this condition is su cient for the 3DVAR and the Bayesian filtering to be well posed. Additionally, we extend the already known fact that the EnKF converges to the Kalman filter in a finite dimension, and prove that a similar statement holds even in a infinite dimension. The EnKF su↵ers from a low rank approximation of a state covariance, so a covariance localization is required in...
|
505 |
Eigenvalues of Differential Operators and Nontrivial Zeros of L-functionsWu, Dongsheng 08 December 2020 (has links)
The Hilbert-P\'olya conjecture asserts that the non-trivial zeros of the Riemann zeta function $\zeta(s)$ correspond (in a certain canonical way) to the eigenvalues of some positive operator. R. Meyer constructed a differential operator $D_-$ acting on a function space $\H$ and showed that the eigenvalues of the adjoint of $D_-$ are exactly the nontrivial zeros of $\zeta(s)$ with multiplicity correspondence. We follow Meyer's construction with a slight modification. Specifically, we define two function spaces $\H_\cap$ and $\H_-$ on $(0,\infty)$ and characterize them via the Mellin transform. This allows us to show that $Z\H_\cap\subseteq\H_-$ where $Zf(x)=\sum_{n=1}^\infty f(nx)$. Also, the differential operator $D$ given by $Df(x)=-xf'(x)$ induces an operator $D_-$ on the quotient space $\H=\H_-/Z\H_\cap$. We show that the eigenvalues of $D_-$ on $\H$ are exactly the nontrivial zeros of $\zeta(s)$. Moreover, the geometric multiplicity of each eigenvalue is one and the algebraic multiplicity of each eigenvalue is its vanishing order as a nontrivial zero of $\zeta(s)$. We generalize our construction on the Riemann zeta function to some $L$-functions, including the Dirichlet $L$-functions and $L$-functions associated with newforms in $\mathcal S_k(\Gamma_0(M))$ with $M\ge1$ and $k$ being a positive even integer. We give spectral interpretations for these $L$-functions in a similar fashion.
|
506 |
p-adic Measures for Reciprocals of L-functions of Totally Real Number FieldsRazan Taha (11186268) 26 July 2021 (has links)
We generalize the work of Gelbart, Miller, Pantchichkine, and Shahidi on constructing p-adic measures to the case of totally real fields K. This measure is the Mellin transform of the reciprocal of the p-adic L-function which interpolates the special values at negative integers of the Hecke L-function of K. To define this measure as a distribution, we study the non-constant terms in the Fourier expansion of a particular Eisenstein series of the Hilbert modular group of K. Proving the distribution is a measure requires studying the structure of the Iwasawa algebra.
|
507 |
Connection Problem for Painlevé Tau FunctionsProkhorov, Andrei 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We derive the differential identities for isomonodromic tau functions, describing their
monodromy dependence. For Painlev´e equations we obtain them from the relation of tau
function to classical action which is a consequence of quasihomogeneity of corresponding
Hamiltonians. We use these identities to solve the connection problem for generic solution
of Painlev´e-III(D8) equation, and homogeneous Painlev´e-II equation.
We formulate conjectures on Hamiltonian and symplectic structure of general isomonodromic deformations we obtained during our studies and check them for Painlev´e equations.
|
508 |
The Importance of the Riemann-Hilbert Problem to Solve a Class of Optimal Control ProblemsDewaal, Nicholas 20 March 2007 (has links) (PDF)
Optimal control problems can in many cases become complicated and difficult to solve. One particular class of difficult control problems to solve are singular control problems. Standard methods for solving optimal control are discussed showing why those methods are difficult to apply to singular control problems. Then standard methods for solving singular control problems are discussed including why the standard methods can be difficult and often impossible to apply without having to resort to numerical techniques. Finally, an alternative method to solving a class of singular optimal control problems is given for a specific class of problems.
|
509 |
Methods for Structural Health Monitoring and Damage Detection of Civil and Mechanical SystemsBisht, Saurabh 07 July 2005 (has links)
In the field of structural engineering it is of vital importance that the condition of an ageing structure is monitored to detect damages that could possibly lead to failure of the structure. Over the past few years various methods for monitoring the condition of structures have been proposed. With respect to civil and mechanical structures several methods make use of modal parameters such as, natural frequency, damping ratio and mode shapes. In the present work four methods for modal parameter estimation and two methods for have been evaluated for their application to multi degree of freedom structures. The methods evaluated for modal parameter estimation are: Wavelet transform, Hilbert-Huang transform, parametric system identification and peak picking. Through various numerical simulations the effectiveness of these methods is studied. It is found that the simple peak-picking method performs the best and is able to identify modal parameters most accurately in all the simulation cases that were considered in this study. The identified modal parameters are then used for locating the damage. Herein the flexibility and the rotational flexibility approaches are evaluated for damage detection. The approach based on the rotational flexibility is found to be more effective. / Master of Science
|
510 |
Phase space methods in finite quantum systems.Hadhrami, Hilal Al January 2009 (has links)
Quantum systems with finite Hilbert space where position x and momentum
p take values in Z(d) (integers modulo d) are considered. Symplectic tranformations
S(2¿,Z(p)) in ¿-partite finite quantum systems are studied and
constructed explicitly. Examples of applying such simple method is given
for the case of bi-partite and tri-partite systems. The quantum correlations
between the sub-systems after applying these transformations are discussed
and quantified using various methods. An extended phase-space x¿p¿X¿P
where X, P ¿ Z(d) are position increment and momentum increment, is introduced.
In this phase space the extended Wigner and Weyl functions are
defined and their marginal properties are studied. The fourth order interference
in the extended phase space is studied and verified using the extended
Wigner function. It is seen that for both pure and mixed states the fourth
order interference can be obtained. / Ministry of Higher Education, Sultanate of Oman
|
Page generated in 0.0372 seconds