1 |
Parallelisierte Bewertung von Zinsderivaten im Modell von Heath-Jarrow-Morton /Grollmann, Manfred, January 2003 (has links) (PDF)
Sankt Gallen, Univ., Diss., 2003.
|
2 |
Análise da série do índice de Depósito Interfinanceiro: modelagem da volatilidade e apreçamento de suas opções. / Analysis of Brazilian Interbank Deposit Index series: volatility modeling and option pricingMauad, Roberto Baltieri 05 December 2013 (has links)
Modelos bastante utilizados atualmente no apreçamento de derivativos de taxas de juros realizam, muitas vezes, premissas excessivamente restritivas com relação à volatilidade da série do ativo objeto. O método de Black and Scholes e o de Vasicek, por exemplo, consideram a variância da série como constante no tempo e entre as diferentes maturidades, suposição que pode não ser a mais adequada para todos os casos. Assim, entre as técnicas alternativas de modelagem da volatilidade que vêm sendo estudadas, destacam-se as regressões por kernel. Discutimos neste trabalho a modelagem não paramétrica por meio da referida técnica e posterior apreçamento das opções em um modelo HJM Gaussiano. Analisamos diferentes especificações possíveis para a estimação não paramétrica da função de volatilidade através de simulações de Monte Carlo para o apreçamento de opções sobre títulos zero cupom, e realizamos um estudo empírico utilizando a metodologia proposta para o apreçamento de opções sobre IDI no mercado brasileiro. Um dos principais resultados encontrados é o bom ajuste da metodologia proposta no apreçamento de opções sobre títulos zero cupom. / Many models which have been recently used for derivatives pricing make restrictive assumptions about the volatility of the underlying object. Black-Scholes and Vasicek models, for instance, consider the volatility of the series as constant throughout time and maturity, an assumption that might not be the most appropriate for all cases. In this context, kernel regressions are important technics which have been researched recently. We discuss in this framework nonparametric modeling using the aforementioned technic and posterior option pricing using a Gaussian HJM model. We analyze different specifications for the nonparametric estimation of the volatility function using Monte Carlo simulations for the pricing of options on zero coupon bonds and conduct an empirical study using the proposed methodology for the pricing of options on the Interbank Deposit Index (IDI) in the Brazilian market. One of our main results is the good adjustment of the proposed methodology on the pricing of options on zero coupon bonds.
|
3 |
Análise da série do índice de Depósito Interfinanceiro: modelagem da volatilidade e apreçamento de suas opções. / Analysis of Brazilian Interbank Deposit Index series: volatility modeling and option pricingRoberto Baltieri Mauad 05 December 2013 (has links)
Modelos bastante utilizados atualmente no apreçamento de derivativos de taxas de juros realizam, muitas vezes, premissas excessivamente restritivas com relação à volatilidade da série do ativo objeto. O método de Black and Scholes e o de Vasicek, por exemplo, consideram a variância da série como constante no tempo e entre as diferentes maturidades, suposição que pode não ser a mais adequada para todos os casos. Assim, entre as técnicas alternativas de modelagem da volatilidade que vêm sendo estudadas, destacam-se as regressões por kernel. Discutimos neste trabalho a modelagem não paramétrica por meio da referida técnica e posterior apreçamento das opções em um modelo HJM Gaussiano. Analisamos diferentes especificações possíveis para a estimação não paramétrica da função de volatilidade através de simulações de Monte Carlo para o apreçamento de opções sobre títulos zero cupom, e realizamos um estudo empírico utilizando a metodologia proposta para o apreçamento de opções sobre IDI no mercado brasileiro. Um dos principais resultados encontrados é o bom ajuste da metodologia proposta no apreçamento de opções sobre títulos zero cupom. / Many models which have been recently used for derivatives pricing make restrictive assumptions about the volatility of the underlying object. Black-Scholes and Vasicek models, for instance, consider the volatility of the series as constant throughout time and maturity, an assumption that might not be the most appropriate for all cases. In this context, kernel regressions are important technics which have been researched recently. We discuss in this framework nonparametric modeling using the aforementioned technic and posterior option pricing using a Gaussian HJM model. We analyze different specifications for the nonparametric estimation of the volatility function using Monte Carlo simulations for the pricing of options on zero coupon bonds and conduct an empirical study using the proposed methodology for the pricing of options on the Interbank Deposit Index (IDI) in the Brazilian market. One of our main results is the good adjustment of the proposed methodology on the pricing of options on zero coupon bonds.
|
4 |
在HJM模型下使用遠期定價法評價或有求償權 / Pricing Contingent Claims under HJM Model using Forward Pricing Method張佳沛, Chang,Chia-Pai Unknown Date (has links)
我們使用一個新方法來評價美式或歐式的或有求償權,其受到本地利率和權益價值的影響。我們使用標的資產的遠期價格的樹狀圖,進而對或有求償權作定價。其中我們評價了美式與歐式的股票選擇權,以及利率期貨和利率期貨選擇權。 / We introduce a methodology for pricing American or European style contingent claims, influenced by domestic interest rates, and equity prices. Instead of using trees of short-term interest rate, bond price or forward interest rate, this tree method will use the forward prices of underlying assets to derive implied binomial spot-price tree and in turn price long term American or European options, and interest rate futures and interest rate futures options.
|
5 |
Pokročilé metody kalibrace modelů úrokových sazeb / Advanced methods of interest rate models calibrationHolotňáková, Dominika January 2013 (has links)
This thesis is focused on the study of advanced methods of interest rate mo- dels calibration. The theoretical part provides introduction to basic terminology of financial mathematics, financial, concretely interest rate derivatives. It presents interest rate models, it is mainly aimed at HJM approach and describes in detail the Libor market model, then introduces the use of Bayesian principle in calcula- ting the probability of MCMC methods. At the end of this section the methods of calibration of volatility to market data are described. The last chapter consists of the practical application of different methods of calibration Libor market model and consequently pricing od interest rate swaption. The introduction describes procedure of arrangement of input data and process of pricing of interest rate derivatives. It is consequently used for the valuation of derivative contract accor- ding to mentioned methods. 1
|
6 |
On Forward Interest Rate Models: Via Random Fields And Markov Jump ProcessesAltay, Suhan 01 May 2007 (has links) (PDF)
The essence of the interest rate modeling by using Heath-Jarrow-Morton framework is to find the drift condition of the instantaneous forward rate dynamics so that the entire term structure is arbitrage free. In this study, instantaneous forward interest rates are modeled using random fields and Markov Jump processes and the drift conditions of the forward rate dynamics are given. Moreover, the methodology presented in this study is extended to certain financial settings and instruments such as multi-country interest rate models, term structure of defaultable bond prices and forward measures. Also a general framework for bond prices via nuclear space valued semi-martingales is introduced.
|
7 |
A Market Model For Pricing Inflation Indexed Bonds With Jumps IncorporationGuney, Ibrahim Ethem 01 August 2008 (has links) (PDF)
Protection against inflation is an essential part of the today' / s financial markets, particularly in high-inflation economies. Hence, nowadays inflation indexed instruments are being increasingly popular in the world financial markets. In this
thesis, we focus on pricing of the inflation-indexed bonds which are the unique inflation-indexed instruments traded in the Turkish bond market. Firstly, we review the Jarrow-Yildirim model which deals with pricing of the inflation-indexed instruments within the HJM framework. Then, we propose a pricing model that is an extension of the Jarrow-Yildirim model. The model allows instantaneous forward rates, inflation index and bond prices to be driven by both a standard
Brownian motion and a finite number of Poisson processes. A closed-form pricing formula for an European call option on the inflation index is also derived.
|
8 |
Pricing Inflation-indexed Swaps And Swaptions Using An Hjm ModelTemiz, Zeynep Canan 01 December 2009 (has links) (PDF)
Inflation-indexed instruments provide a real return and protect investors from the erosion of
the purchasing power of money. Hence, inflation-indexed markets grow very fast day by day.
In this thesis, we focus on pricing of the inflation-indexed swaps and swaptions which are the
most liquid derivative products traded in the inflation-indexed markets. Firstly, we review the
Hull-White extended Vasicek model in the HJM framework. Then, we use this model to price
inflation-indexed swaps. Also, pricing of inflation-indexed swaptions is given using Black&rsquo / s
market model.
|
9 |
Pricing Inflation Indexed Swaps Using An Extended Hjm Framework With Jump ProcessKarahan, Ceren 01 December 2010 (has links) (PDF)
Inflation indexed instruments are designed to help protect investors against the changes in the
general level of prices. So, they are frequently preferred by investors and they have become
increasingly developing part of the market. In this study, firstly, the HJM model and foreign
currency analogy used to price of inflation indexed instruments are investigated. Then, the
HJM model is extended with finite number of Poisson process. Finally, under the extended
HJM model, a pricing derivation of inflation indexed swaps, which are the most liquid ones
among inflation indexed instruments in the market, is given.
|
10 |
Semilinear stochastic differential equations with applications to forward interest rate models.Mark, Kevin January 2009 (has links)
In this thesis we use techniques from white noise analysis to study solutions of semilinear stochastic differential equations in a Hilbert space H: {dX[subscript]t = (AX[subscript]t + F(t,X[subscript]t)) dt + ơ(t,X[subscript]t) δB[subscript]t, t∈ (0,T], X[subscript]0 = ξ, where A is a generator of either a C[subscript]0-semigroup or an n-times integrated semigroup, and B is a cylindrical Wiener process. We then consider applications to forward interest rate models, such as in the Heath-Jarrow-Morton framework. We also reformulate a phenomenological model of the forward rate. / Thesis (Ph.D.) -- University of Adelaide, School of Mathematical Science, 2009
|
Page generated in 0.0347 seconds