Spelling suggestions: "subject:"holomorfas,"" "subject:"holomorphe,""
1 |
O Teorema de Hopf e GeneralizaçõesPereira, Julio Cesar Carvalho 30 September 2014 (has links)
Submitted by Mayara Nascimento (mayara.nascimento@ufba.br) on 2016-06-08T12:28:21Z
No. of bitstreams: 1
dissertação final Impressão Julio Cesar.pdf: 1580666 bytes, checksum: 329c0335d9c8e580beede456260f86ea (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-13T17:26:27Z (GMT) No. of bitstreams: 1
dissertação final Impressão Julio Cesar.pdf: 1580666 bytes, checksum: 329c0335d9c8e580beede456260f86ea (MD5) / Made available in DSpace on 2016-06-13T17:26:27Z (GMT). No. of bitstreams: 1
dissertação final Impressão Julio Cesar.pdf: 1580666 bytes, checksum: 329c0335d9c8e580beede456260f86ea (MD5) / "Em 1951, o matemático Heinz Hopf provou a seguinte afirmação:
'Seja S uma superfícies em R^3, compacta de gênero zero, com
curvatura média constante. Então S é a esfera.'
O objetivo do nosso trabalho é apresentar a demonstração deste resultado clássico, bem como, alguns resultados que o generalizam. Serão consideradas superfícies c.m.c. imersas me espaços homogêneos E^3(t,k) e também superfícies com vetor curvatura média paralelo imersas em espaços E^n_c X R.
As técnicas desenvolvidas originalmente por Hopf, com as devidas adaptações a cada
novo espaço ambiente, são as principais ferramentas utilizadas nas demonstrações dessas generalizações."
|
2 |
Symmetries of Julia sets for analytic endomorphisms of the Riemann sphere / Simetrias de conjuntos de Julia para endomorfismos analíticos da esfera de RiemannFerreira, Gustavo Rodrigues 25 July 2019 (has links)
Since the 1980s, much progress has been done in completely determining which functions share a Julia set. The polynomial case was completely solved in 1995, and it was shown that the symmetries of the Julia set play a central role in answering this question. The rational case remains open, but it was already shown to be much more complex than the polynomial one. In this thesis, we review existing results on rational maps sharing a Julia set, and offer results of our own on the symmetry group of such maps. / Desde a década de oitenta, um enorme progresso foi feito no problema de determinar quais funções têm o mesmo conjunto de Julia. O caso polinomial foi completamente respondido em 1995, e mostrou-se que as simetrias do conjunto de Julia têm um papel central nessa questão. O caso racional permanece aberto, mas já se sabe que ele é muito mais complexo do que o polinomial. Nesta dissertação, nós revisamos resultados existentes sobre aplicações racionais com o mesmo conjunto de Julia e apresentamos nossos próprios resultados sobre o grupo de simetrias de tais aplicações.
|
3 |
Sobre subvariedades totalmente reais / On totally real submanifoldsJosà Loester Sà Carneiro 05 July 2011 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Subvariedades analÃticas complexas e totalmente reais sÃo duas classes tÃpicas dentre todas as subvariedades de uma variedade quase Hermitiana. Neste trabalho procuramos dar algumas caracterizaÃÃes de subvariedades totalmente reais. AlÃm disso algumas classificaÃÃes de subvariedades totalmente reais em formas espaciais complexas sÃo obtidas. / Complex analytic submanifolds and totally real submanifolds are two typical classes among all submanifolds of an almost Hermitian manifolds. In this work, some characterizations of totally real submanifolds are given. Moreover some classifications of totally real submanifolds in complex space forms are obtained.
|
4 |
O teorema de H. Hopf e as inequações de Cauchy-Riemann / A theorem of H. Hopf and the Cauchy-Riemann inequalityCosta, Maria de Andrade 04 December 2006 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em 1951, H. Hopf publicou em um prestigiado artigo um famoso resultado:
Seja M uma superfície compacta de gênero zero imersa no espaço Euclidiano de dimensão três com curvatura média constante. Então M é isométrica à esfera redonda.
Neste trabalho descreveremos detalhadamente do ponto de vista matemático uma generalização do resultado obtido por H. Hopf, a qual será publicada na revista Communication in Analysis and Geometry em 2007, cujos autores são Hilário Alencar, Manfredo Perdigão do Carmo e Renato Tribuzy. Neste artigo, os pesquisadores classificaram as superfíıcies compactas de gênero zero imersas na variedade produto:
superfícies com curvatura Gaussiana constante cartesiano o espaço Euclidiano de dimensão um e cuja diferencial da curvatura média satisfaz uma certa desigualdade envolvendo uma forma quadrátrica.
Além disso, estudaremos uma extensão da classificação anterior no caso em que as superfícies estão imersas numa variedade Riemanniana simplesmente conexa, homogênea
com um grupo de isometrias de dimensão quatro. Tais resultados foram obtidos recentemente por Hilário Alencar, Isabel Fernández, Manfredo Perdigão do Carmo e Renato Tribuzy. Nas demonstrações destes teoremas foram usadas técnicas de Análise Complexa, fatos de Topologia e uma generalização do Teorema de H. Hopf obtida por
Abresch e Rosenberg, publicado em Acta Mathematica em 2004.
|
5 |
O teorema de Baum-Bott / The Baum-Bott s theoremLourenço, Fernando 16 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:45:34Z (GMT). No. of bitstreams: 1
texto completo.pdf: 773931 bytes, checksum: b0a68b67919eb9c2b9b8534b4a2a7818 (MD5)
Previous issue date: 2012-02-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this word, we did a detailed study of the Baum-Bott s theorem in two situations. To do this, we examine this theorem in [2] and its proof given by S. S. Chern using methods of differential geometry, in which case the non-degenerated singularities for one-dimensional holomorphic foliation.Then use the article [31] of M. Soares, where he retraces the Chern s proof with a slight change, thus eliminating the possibility of non-degenerated. The result of great importance because it is applied to meromorphic
vector fields, which are abundant and generate one-dimensional singular holomorphic foliations in compact manifolds. As a way to apply this result, we deal with the problem of Poincare in [28] to limit the degree of an invariant curve depending on the degree of the foliation. This problem was motivated by the work of Darboux with respect to algebraic integrability foliations in [13]. We gathered the results of Cerveau and Lins Neto in [12] and also M.Carnicer in [9] about the problem of Poincare, that were introduced about 100 years later the work of Poincaré. Finally we also explored the contribution of M. Soares to this problem in [32]. / Fizemos, neste trabalho, um estudo detalhado do teorema de Baum-Bott em duas situações. Para tal feito, analisamos esse teorema em [2] e a sua prova dada por S. S. Chern através de métodos de geometria diferencial, no caso em que as singularidades da folheação holomorfa de dimensão 1 são do tipo não-degeneradas. Depois usamos o artigo [31] de M. Soares, onde ele refaz essa prova de Chern com uma ligeira mudança, retirando assim a hipótese de não-degeneregência. Resultado esse de grande importância pelo fato de ser aplicado a campos de vetores meromorfos, que são abundantes e que geram folheações holomorfas singulares de dimensão 1 em variedade compactas. Como maneira de aplicar tal resultado, lidamos com o problema de Poincaré em [28], que trata de limitar o grau de uma curva invariante em função do grau da folheação. Esse problema foi motivado pelo trabalho de Darboux com respeito á integrabilidade algébrica de folheações em [13]. Reunimos os resultados de Cerveau e Lins neto em [12] e também de M. Carnicer em [9] a respeito do problema de Poincaré, que foram apresentados cerca de 100 anos depois do trabalho de Poincaré. E por fim exploramos a contribuição de M. Soares para esse problema em [32].
|
6 |
Invariant measures on polynomial quadratic Julia sets with no interior / Invariant measures on polynomial quadratic Julia sets with no interiorPoirier Schmitz, Alfredo 25 September 2017 (has links)
We characterize invariant measures for quadratic polynomial Julia sets with no interior. We prove that besides the harmonic measure —the only one that is even and invariant—, all others are generated by a suitable odd measure. / En este artículo caracterizamos medidas invariantes sobre conjuntos de Julia sin interior asociados con polinomios cuadráticos. Probamos que más allá de la medida armónica —la única par e invariante—, el resto son generadas por su parte impar.
|
7 |
Integral complexa: teorema de Cauchy, fórmula integral de Cauchy e aplicações / Complex integral: Cauchy's theorem, Cuchy integral formula and applicationsOliveira, Saulo Henrique de 29 April 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-12-03T08:37:01Z
No. of bitstreams: 2
Dissertação - Saulo Henrique de Oliveira - 2015.pdf: 1917786 bytes, checksum: 72281ae1c7a550ab53f962bb0da58d07 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-12-03T08:39:30Z (GMT) No. of bitstreams: 2
Dissertação - Saulo Henrique de Oliveira - 2015.pdf: 1917786 bytes, checksum: 72281ae1c7a550ab53f962bb0da58d07 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-12-03T08:39:30Z (GMT). No. of bitstreams: 2
Dissertação - Saulo Henrique de Oliveira - 2015.pdf: 1917786 bytes, checksum: 72281ae1c7a550ab53f962bb0da58d07 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-04-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work ... / Este trabalho ...
|
8 |
Teoremas de comparação em variedades Käler e aplicações / Laplacian comparison of theorems for Käler manifolds and applicationsSantos, Adina Rocha dos 25 March 2011 (has links)
In this work we present the proofs of the Laplacian comparison theorems for Kähler manifolds Mm of complex dimension m with holomorphic bisectional curvature bounded from below by −1, 1, and 0. The manifolds being compared are the complex hyperbolic space CHm, the complex projective space CPm, and the complex Euclidean space Cm, which holomorphic bisectional curvatures are −1, 1, and 0, respectively. Moreover, as applications of the Laplacian comparison theorems, we describe the proof of the Bishop- Gromov comparison theorem for Kähler manifolds and obtain an estimate for the first eigenvalue λ1(M) of the Laplacian operator, that is, λ1(M) ≤ m2 = λ1(CHm), and show that the volume of Kähler manifolds with holomorphic bisectional curvature bounded from below by 1 is bounded by the volume of CPm. The results cited above have been proved in 2005 by Li and Wang, in an article Comparison theorem for Kähler Manifolds and Positivity of Spectrum , published in the Journal of Differential Geometry. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta dissertação, apresentamos as demonstrações dos teoremas de comparação do Laplaciano para variedades Kähler completas Mm de dimensão complexa m com curvatura bisseccional holomorfa limitada inferiormente por −1, 1 e 0. As variedades a serem comparadas são o espaço hiperbólico complexo CHm, o espaço projetivo complexo CPm e o espaço Euclidiano complexo Cm, cujas curvaturas bisseccionais holomorfas são −1, 1 e 0, respectivamente. Além disso, como aplicação dos teoremas de comparação do Laplaciano, descrevemos a prova do Teorema de Comparação de Bishop-Gromov para variedades Kähler; obtemos uma estimativa para o primeiro autovalor λ1(M) do Laplaciano, isto é, λ1(M) ≤ m2 = λ1(CHm); e mostramos que o volume de variedades Kähler, com curvatura bisseccional limitada inferiormente por 1, é limitado pelo volume de CPm. Os resultados citados acima foram provados em 2005 por Li e Wang no artigo Comparison Theorem for Kähler Manifolds and Positivity of Spectrum , publicado no Journal of Differential Geometry.
|
Page generated in 0.0382 seconds