Spelling suggestions: "subject:"cosmologique"" "subject:"entomologique""
1 |
Une approche algorithmique pour le calcul de l'homologie de fonctions continuesAllili, Madjid. January 1999 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 1999. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
2 |
Les ponts entre la cohomologie et la stabilité des équations fonctionnelles /Poulin, Denis, January 2007 (has links) (PDF)
Thèse (M.A.)--Université Laval, 2007. / Bibliogr.: f. [83]-84. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
|
3 |
L'espace classifiant d'un carquois lié et cohomologie(s) des algèbres de dimension finieBustamante Rosero, Juan Carlos. January 2003 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 2003. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
4 |
Simplicial complexes of graphs /Jonsson, Jakob, January 1900 (has links)
Texte remanié de: Thesis Ph. D.--Stockholm--Royal institute of technology, 2005. / Bibliogr. p. 363-369.
|
5 |
Critères de finitude homologique pour la non convergence des systèmes de réécriture de termesMalbos, Philippe 28 January 2004 (has links) (PDF)
L'algorithme de complétion de Knuth-Bendix permet, dans certains<br />cas, d'utiliser les systèmes de réécriture pour décider le<br />problème du mot dans un monoïde. Le problème du mot est alors<br />réduit a un calcul de forme normale. Cependant, tous les monoïdes<br />décidables ne peuvent pas être résolus de cette façon. Un<br />programme, initie par Squier, vise a caractériser par des<br />invariants algébriques la classe des monoïde décidables par<br />réécriture.<br />L'objectif de cette thèse est d'étendre ce travail a la réécriture<br />de termes.<br />Nous établissons des conditions de finitude homologique pour<br />l'existence de présentations convergentes de type fini par<br />réécriture de termes de théories équationnelles du premier ordre<br />avec une sorte. Une théorie équationnelle est sémantiquement<br />décrite par une théorie algébrique au sens de Lawvere. Nous<br />introduisons l'homologie de ces théories à coefficients dans les<br />bimodules non additifs, comme généralisation de l'homologie de<br />MacLane des anneaux. Cette homologie admet une interprétation en<br />terme d'homologie de Hochschild-Mitchell de la petite catégorie<br />sous-jacente. Nous généralisons les résolutions libres de Squier<br />et Kobayashi, établies en réécriture de mots, à la réécriture de<br />petites catégories. En utilisant ces résolutions, nous montrons<br />qu'une théorie algébrique admettant une présentation convergente<br />de type fini est de type bi-$\mathrm(PF)_(\infty)$. Nous<br />construisons une théorie équationnelle, non unaire, décidable et<br />n'admettant pas de présentation convergente de type fini.
|
6 |
Les ponts entre la cohomologie et la stabilité des équations fonctionnellesPoulin, Denis 12 April 2018 (has links)
Dans ce mémoire, nous étudions la stabilité des équations fonctionnelles, la cohomologie des algèbres de Banach ainsi que les liens utiles entre ces deux théories. Nous présentons au chapitre 2 une introduction à la stabilité des équation fonctionnelles et quelques nouveaux résultats concernant les fonctions strictement e-additives. Au chapitre 3, nous étudions les notions de base de la cohomologie, incluant le produit tensoriel et l'amenabilité d'une algèbre. Finalement, au chapitre 4, nous explorons les liens entre ces deux domaines. Ce chapitre est principalement constitué de travail original. Nous y faisons le lien entre l'amenabilité d'un groupe et la stabilité de l'équation de Cauchy sur ce groupe. De plus, dans des circonstances précises, nous proposons deux approches possibles pour relier le fait que Hn (l1 (S), l°°(S)) est un espace de Banach, où S est un semi-groupe, avec la stabilité de certaines équations sur S.
|
7 |
Suite spectrale des applications C °-stratifiées : homologie des fibrés à singularités.Brasselet, Jean-Paul. January 1900 (has links)
Th.--Sci. math.--Lille 1, 1977. N°: 381.
|
8 |
Homologies d'algèbres Artin-Schelter régulières cubiquesMarconnet, Nicolas 09 December 2004 (has links) (PDF)
Les algèbres Artin-Schelter régulières sont des analogues non-commutatifs d'algèbres de polynomes. En dimension globale 3, ces algèbres graduées sont homogènes et ont des relations de degré 2 ou 3. Dans cette thèse, nous nous intéressons à certaines algèbres Artin-Schelter régulières de dimension globale 3, à relations cubiques. Nous commencons par calculer l'homologie de Hochschild des algèbres Artin-Schelter régulières de dimension globale 3, cubiques de type A à coefficients génériques. Soit $A$ une telle algèbre. Nous suivons la méthode employée par M. Van den Bergh (K-Theory 8 (1994) 213-230) dans le cas quadratique, en considérant cette algèbre comme déformation d'une algèbre de polynomes, avec crochet de Poisson remarquable. Nous calculons alors l'homologie de Poisson et nous montrons que la suite spectrale de Brylinski associée dégénère. Pour cela, nous utilisons le fait que cette algèbre est de Koszul au sens généralisé défini par R. Berger (J. Algebra 239 (2001) 705-734) et nous donnons un nouveau quasi-isomorphisme entre la résolution de Koszul de $A$ par des $A$-$A$-bimodules et la bar-résolution de $A$. Nous déduisons la cohomologie de de Rham, l'homologie cyclique et l'homologie cyclique périodique de l'homologie de Hochschild de $A$, en utilisant des résultats classiques. La propriété de Koszul généralisée nous permet d'écrire un quasi-isomorphisme explicite entre le complexe qui calcule la cohomologie de Hochschild de $A$ et le complexe qui calcule l'homologie de Hochschild de $A$, obtenant ainsi une dualité de Poincaré. Nous déduisons alors la cohomologie de Hochschild de $A$ de l'homologie de Hochschild de $A$. Nous déterminons le centre de $A$, ce qui n'était pas connu. Nous terminons par divers compléments. En particulier, nous explicitons une injection de la résolution de Koszul par des $A$-$A$-bimodules vers la bar-résolution de $A$, valable pour toute algèbre de Koszul généralisée $A$.
|
9 |
Dualité de Koszul des PROPsVallette, Bruno 09 December 2003 (has links) (PDF)
Nous généralisons la dualité de Koszul des algèbres et des opérades aux PROPs. Alors que les opérades sont des objets algébriques qui représentent les opérations à plusieurs entrées et une seule sortie sur les différents types d'algèbres, les PROPs modélisent les opérations à plusieurs entrées et plusieurs sorties agissant sur des structures algébriques telles que les bigèbres et les bigèbres de Lie. Nous introduisons un nouveau produit monoidal qui décrit les compositions entre ces opérations et nous restreignons notre étude à la partie connexe de chaque PROP, que nous appelons "propérade", par analogie avec les opérades. Nous généralisons aux propéades les différents objets homologiques associés aux algèbres et aux opérades comme les bar et cobar constructions, les modules et les propérades quasi-libres. Pour une propérade (resp. un PROP) donnée, nous construisons une copropérade (resp. un coPROP) dual ainsi qu'un complexe de Koszul dont l'acyclicité est un critère qui permet de déterminer si la cobar construction fournit une résolution quasi-libre, appelée modèle minimal, de la propérade (resp. du PROP) de départ. Pour démontrer ce théorème, nous introduisons une graduation supplémentaire qui provient ici des différents foncteurs analytiques engendrés par le produit monoidal. Cette théorie nous permet de définir des notions de "bigèbres" à homotopie près, sur un PROP de Koszul. Cette notion est l'équivalente au niveau des "bigèbres" de celle d'algèbre à homotpie près, qui est très importante en topologie algèbrique.
|
10 |
Bounding The Hochschild Cohomological DimensionKratsios, Anastasis 08 1900 (has links)
Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter
les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de
borner la dimension cohomologique des k-algèbres par dessous; montrant que presque
aucune k-algèbre commutative est quasi-libre. / The aim of this master’s thesis is two-fold. Firstly to develop and interpret the low
dimensional Hochschild cohomology of a k-algebra and secondly to establish a lower
bound for the Hochschild cohomological dimension of a k-algebra; showing that nearly
no commutative k-algebra is quasi-free.
|
Page generated in 0.0579 seconds