• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of the vertebrate parahox clusters

Prohaska, Sonja, Stadler, Peter F. 23 October 2018 (has links)
The ParaHox cluster contains three Hox‐related homeobox genes. The evolution of this sister of the Hox‐gene clusters has been studied extensively in metazoans with a focus on its early evolution. Its fate within the vertebrate lineage, and in particular following the teleost‐specific genome duplication, however, has not received much attention. Three of the four human ParaHox loci are linked with PDGFR family tyrosine kinases. We demonstrate that these loci arose as duplications in an ancestral vertebrate and trace the subsequent history of gene losses. Surprisingly, teleost fishes have not expanded their ParaHox repertoire following the teleost‐specific genome duplication, while duplicates of the associated tyrosine kinases have survived, supporting the hypothesis of a large‐scale duplication followed by extensive gene loss.
2

The duplication of the Hox gene clusters in teleost fishes

Prohaska, Sonja, Stadler, Peter F. 23 October 2018 (has links)
Higher teleost fishes, including zebrafish and fugu, have duplicated their Hox genes relative to the gene inventory of other gnathostome lineages. The most widely accepted theory contends that the duplicate Hox clusters orginated synchronously during a single genome duplication event in the early history of ray-finned fishes. In this contribution we collect and re-evaluate all publicly available sequence information. In particular, we show that the short Hox gene fragments from published PCR surveys of the killifish Fundulus heteroclitus, the medaka Oryzias latipes and the goldfish Carassius auratus can be used to determine with little ambiguity not only their paralog group but also their membership in a particular cluster. Together with a survey of the genomic sequence data from the pufferfish Tetraodon nigroviridis we show that at least percomorpha, and possibly all eutelosts, share a system of 7 or 8 orthologous Hox gene clusters. There is little doubt about the orthology of the two teleost duplicates of the HoxA and HoxB clusters. A careful analysis of both the coding sequence of Hox genes and of conserved non-coding sequences provides additional support for the “duplication early” hypothesis that the Hox clusters in teleosts are derived from eight ancestral clusters by means of subsequent gene loss; the data remain ambiguous, however, in particular for the HoxC clusters. Assuming the “duplication early” hypothesis we use the new evidence on the Hox gene complements to determine the phylogenetic positions of gene-loss events in the wake of the cluster duplication. Surprisingly, we find that the resolution of redundancy seems to be a slow process that is still ongoing. A few suggestions on which additional sequence data would be most informative for resolving the history of the teleostean Hox genes are discussed.

Page generated in 0.042 seconds