• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 29
  • 10
  • 8
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 128
  • 128
  • 40
  • 30
  • 29
  • 24
  • 22
  • 19
  • 18
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Susceptibilidade magnética de um modelo de Hubbard estendido com interação ao atrativa / Magnetic Susceptibility of an extended Hubbard model with attractive interaction

Lobo, Cesar de Oliveira 17 January 2012 (has links)
Anomalous properties of the normal state of a strongly correlated electron system described by an attractive extended Hubbard model are investigated. The equations of motion of the Green s functions are calculated with the two-pole approximation which gives rise to quasiparticle renormalized bands. The two-pole approximation leads to a set of correlation functions. In particular, the antiferromagnetic correlation function h~Si · ~Sji plays an important role as a source of anomalies in the normal state of the model. The uniform static magnetic susceptibility as a function of occupation nT and temperature is calculated. At low temperatures, the susceptibility presents a peak for nT ≃ 0.80. The results suggest that it is the onset of short range antiferromagnetic correlations, which could be a mechanism for the pseudogap. The Fermi surface, defined by the spectral function A(ω = 0,~k), is presented for different dopings. It has been observed that above nT ≃ 0.80 the ordinary Fermi surface evolves to a hole-pocket with pseudogaps near the antinodal points (0, π) and (π, 0). / Neste trabalho, investigamos certas propriedades anômalas do estado normal de sistemas de elétrons fortemente correlacionados, descrito por um modelo de Hubbard estendido, com interação atrativa. As equações de movimento das funções de Green são calculadas na aproximação de dois polos que gera às bandas de quasipartículas renormalizadas. A aproximação de dois polos dá origem a um conjunto de funções correlação. Em particular, a função correlação h~Si.~Sji, associadas ás correlações antiferromagnética, desempenha um papel importante como fonte de anomalias no estado normal do modelo. A susceptibilidade magnética é calculada como função da ocupação nT e da temperatura. Em baixas temperaturas, a susceptibilidade apresenta um pico para nT∼=0, 80 e é nessa ocupação que as correlações antiferromagnéticas assumem um papel importante responsável pelo surgimento de pseudogaps na superfície de Fermi. O cálculo do calor específico em função da temperatura mostra uma estrutura de dois picos, um associado ás flutuações de spin e localizado em baixas temperaturas e outro associado á flutuações de cargas localizado em temperaturas mais altas. Verificamos uma relação direta entre o pico, devido ás flutuações de spins e às correlações spin-spin do tipo antiferromagnéticas. A superfície de Fermi definida pela função espectral (A~k,σ(ω)) em ω = 0 é calculada para diferentes ocupações. Foi observado que a partir de nT∼=0, 80 a superfície de Fermi desenvolve pockets centrados no ponto nodal (π 2 , π 2 ) como também pseudogaps nas proximidades dos pontos antinodais (π, 0) e (0, π).
102

Complexity near critical points

Uday Sood (16993635) 15 September 2023 (has links)
<p dir="ltr">Complexity has played an increasingly important role in recent years. In this dissertation, we study some notions of complexity in systems that exhibit critical behaviour. Our results show that complexity as it is generally understood in holographic and lattice models of criticality can have several ambiguities. But despite these ambiguities, there are some features that are universally true. On the phase diagram of the system, it is the critical point which has the most complex ground state. States of physical systems with a large complexity tend to be hard to simulate using quantum circuits. Near the critical point, there is a part of complexity which is non-analytic and scales universally, i.e, the scaling is independent of the microscopic details of the Hamiltonian but depends only on the dimensionality of the system, and of the deforming operator. The coefficient of this term is unambiguous, i.e, it is not affected by the various changes in the definition of complexity which plague all the analytic terms near the critical point. We show this in lattice, field-theoretic and holographic calculations. These results were first presented in our earlier studies.</p>
103

Investigation of Order Parameters and Critical Coupling for the Peierls Extended Hubbard Model at One-Quarter Filling

Hardikar, Rahul Padmakar 11 December 2004 (has links)
The determination of the phase boundary between the charge density wave and the Luttinger Liquid phase for the one-dimensional Peierls extended Hubbard model is done using Stochastic Series Expansion and comparison is done with the phase boundary for the Extended Hubbard model. The result of adding an electron-phonon interaction is that the charge density wave phase weakens. par The energy autocorrelation time is reported for the Extended Hubbard Model and the Peierls Hubbard Model. For coupling near and above the critical coupling the autocorrelation time increases exponentially. par Also investigated is the presence of a spin gap and the critical value of phonon coupling with respect to two parameters, (1) the bare phonon frequency and (2) different U, at one-quarter filling.
104

Electron-electron and electron-phonon interactions in strongly correlated systems

Sica, G. January 2013 (has links)
In this work we investigate some aspects of the physics of strongly correlated systems by taking into account both electron-electron and electron-phonon interactions as basic mechanisms for reproducing electronic correlations in real materials. The relevance of the electron-electron interactions is discussed in the first part of this thesis in the framework of a self-consistent theoretical approach, named Composite Operator Method (COM), which accounts for the relevant quasi-particle excitations in terms of a set of composite operators that appear as a result of the modification imposed by the interactions on the canonical electronic fields. We show that the COM allows the calculation of all the relevant Green s and correlation functions in terms of a number of unknown internal parameters to be determined self-consistently. Therefore, depending on the balance between unknown parameters and self-consistent equations, exact and approximate solutions can be obtained. By way of example, we discuss the application of the COM to the extended t-U-J-h model in the atomic limit, and to the two-dimensional single-band Hubbard model. In the former case, we show that the COM provides the exact solution of the model in one dimension. We study the effects of electronic correlations as responsible for the formation of a plethora of different charge and/or spin orderings. We report the phase diagram of the model, as well as a detailed analysis of both zero and finite temperature single-particle and thermodynamic properties. As far as the single-band Hubbard model is concerned, we illustrate an approximated self-consistent scheme based on the choice of a two-field basis. We report a detailed analysis of many unconventional features that arise in single-particle properties, thermodynamics and system's response functions. We emphasize that the accuracy of the COM in describing the effects of electronic correlations strongly relies on the choice of the basis, paving the way for possible multi-pole extensions to the two-field theory. To this purpose, we also study a three-field approach to the single-band Hubbard model, showing a significant step forward in the agreements with numerical data with respect to the two-pole results. The role of the electron-phonon interaction in the physics of strongly correlated systems is discussed in the second part of this thesis. We show that in highly polarizable lattices the competition between unscreened Coulomb and Fröhlich interactions results in a short-range polaronic exchange term Jp that favours the formation of local and light pairs of bosonic nature, named bipolarons, which condense with a critical temperature well in excess of hundred kelvins. These findings, discussed in the framework of the so-called polaronic t-Jp model, are further investigated in the presence of a finite on-site potential U, coming from the competition between on-site Coulomb and Fröhlich interactions. We discuss the role of U as the driving parameter for a small-to-large bipolaron transition, providing a possible explanation of the BEC-BCS crossover in terms of the properties of the bipolaronic ground state. Finally, we show that a hard-core bipolarons gas, studied as a charged Bose-Fermi mixture, allows for the description of many non Fermi liquid behaviours, allowing also for a microscopic explanation of pseudogap features in terms of a thermal-induced recombination of polarons and bipolarons, without any assumption on preexisting order or broken symmetries.
105

Elektronendynamik und Phasendiagramme in Vielteilchen-Modellen des Magnetismus

Henning, Soeren 26 August 2013 (has links)
Der erste Teil dieser Arbeit ist dem Kondogittermodell gewidmet. Für ein Elektron, das in einen ferromagnetisch gesättigten Hintergrund aus lokalen Spinmomenten eingebracht wird (ferromagnetisches Polaron), wird die stationäre Schrödingergleichung gelöst und das vollständige Eigenwertspektrum im endlichen und unendlichen Gitter abgeleitet. Danach wird die zeitabhängige Schrödingergleichung für beliebige Anfangsbedingungen gelöst und eine detaillierte Analyse des Down-Elektron-Zerfalls vorgenommen. Für endliche Bandfüllungen wird im Anschluss das magnetische Grundzustandsphasendiagramm mit Hilfe einer Molekularfeldtheorie bestimmt. Der Einfluss von Verdünnung/Unordnung im lokalen Momentensystem auf die auftretenden Phasen wird analysiert. Im zweiten Teil der Arbeit wird das Hubbardmodell untersucht. Für dieses wird mit Hilfe einer modifizierten Störungstheorie (englisch: modified perturbation theory, MPT) eine wellenzahlabhängige (nicht-lokale) Selbstenergie abgeleitet, die sowohl für schwache als auch für starke Coulombwechselwirkungen gute Ergebnisse liefert. Mit dieser werden dann Spektraldichten und Quasiteilchenzustandsdichten berechnet, wobei insbesondere die nicht-lokalen Korrelationseffekte im Fokus stehen. Daneben werden Ergebnisse für die optische Leitfähigkeit, die in einer renormierten diagrammatischen Ein-Schleifen-Näherung berechnet wurden, besprochen. Es wird dann gezeigt, dass nur unter Beachtung der nicht-lokalen Korrelationseffekte ein ferromagnetisches Phasendiagramm konstruiert werden kann, das in Einklang mit dem Mermin-Wagner-Theorem steht. / The first part of this work deals with the Kondo-lattice model. The stationary Schrödinger equation is solved for the case of one electron in a ferromagnetically saturated local moment system (the magnetic polaron). The complete eigensystem is derived for the finite and infinite lattice. The time-dependent Schrödinger equation is then solved for arbitrary initial conditions and a detailed analysis of the down-electron decay dynamics is given. For finite band occupations the magnetic ground-state phase diagram is constructed within a mean-field theory. The effect of disorder/dilution in the local moment system on the phase diagram is discussed. The second part concentrates on the investigation of the Hubbard model. A nonlocal self-energy is derived within a modified perturbation theory that interpolates between weak and strong Coulomb repulsion. Results for the spectral density and quasiparticle density of states are shown with special attention to the effects of nonlocal correlations. Results for the optical conductivity within a renormalized one-loop approximation are also discussed. The main result of this section is the importance of nonlocal correlations for the fulfillment of the Mermin-Wagner theorem. A phase diagram that shows regions of ferromagnetic order is calculated for the simple cubic lattice.
106

Ferromagnetismus und temperaturabhängige elektronische Struktur in metallischen Filmen

Herrmann, Tomas 03 June 1999 (has links)
In der vorliegenden Arbeit wird der Einfluß der reduzierten Translationssymmetrie auf die magnetischen Eigenschaften in dünnen Filmen und an Oberflächen auf der Basis des stark korrelierten Hubbard-Modells untersucht. Zunächst wird die Möglichkeit von spontanem Ferromagnetismus im Hubbard-Modell für translationssymmetrische Systeme diskutiert.Verschiedene Näherungsmethoden zur Lösung des Vielteilchenproblems des Hubbard-Modells werden detailliert beschrieben und mit Ergeb nissen von Quanten-Monte-Carlo-Rechnungen verglichen. Die Konsistenz mit exakten Resultaten über die grobe Struktur der Ein-Teilchen-Spektraldichte im Limes starker Coulomb- Wechselwirkung zwischen den Elektronen erweist sich als essentiell wichtig für eine qualitativ korrekte Beschreibung von spontanem Ferromagnetismus. Das Temperaturverhalten in der ferromagnetischen Phase wird anhand von Magnetisierungs kurven sowie mit Hilfe des spinabhängigen Quasiteilchenspekt rums ausführlich diskutiert. Ein genaues Verständnis der Physik des Volumensystems liefert die Basis für den Übergang zu Systemen mit reduzierter Translationssymmetrie. Es wird eine Methode vorgestellt mit der sich approximative Theorien für das translationssymmetrische Hubbard-Modell auf die Behandlung von Filmsystemen verallgemeinern lassen. Die magnetischen Eigenschaften dünner Hubbard-Filme werden mit Hilfe der lagenabhängigen Magnetisierung als Funktion der Temperatur sowie der Filmdicke diskutiert. Die Abhängigkeit der Curie-Temperatur von der Filmdicke wird untersucht. Insbesondere wird auf die Frage nach der magnetischen Stabilität an der Oberfläche eingegangen. In stark korrelierten Elektronensystemen ist für endliche Temperaturen die magnetische Stabilität an der Oberfläche reduziert im Vergleich zu den inneren Lagen, obwohl auf der Basis des bekannten Stoner-Bildes für Bandmagnetismus genau der gegenteilige Trend zu erwarten wäre. Es wird gezeigt,daß sich dieses Verhalten anhand einfacher Argumente versteh en läßt. Die magnetischen Eigenschaften der Hubbard-Filme lassen sich im Detail mit Hilfe der lokalen Quasiteilchenzus tandsdichte sowie der wellenvektorabhängigen Spektraldichte analysieren. Die elektronische Struktur zeigt eine ausgeprägte Spin-, Lagen- und Temperaturabhängigkeit. In einem weiteren Teil der Arbeit wird der temperaturgetrieb ene Reorientierungsübergang der Magnetisierungsrichtung in dünnen metallischen Filmen untersucht. Dazu müssen die die Hubbard-Filme um anisotrope Beiträge der Dipol-Wechselwir kung und der Spin-Bahn-Wechsel wirkung erweitert werden. Das Wechselspiel von Dipol- und Spin-Bahn-Anisotropie führt unter gewissen Bedingungen zu einem Reorientierungsübergang als Funktion der Temperatur. Im Rahmen des hier vorgestellten Zugangs lassen sich sowohl Reorientierungsüber gänge von einer senkrechten in eine parallele Position ("Fe-artig") als auch Reorientierungsübergänge von einer parallelen in eine senkrechte Position ("Ni-artig") der Magnetisierung qualitativ korrekt beschreiben. / In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electr on films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many -body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasiparticle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer-dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of bandmagnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasiparticle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin-, layer-, and temperature- dependent. The last part of this work is concerned about the temperature-driven reorientation transition in thin metallic films. For the description of the magnetic anisotropy in thin films the dipole interaction as well as the spin-orbit interaction have to be included in the model. By calculating the temperature-dependence of the magnetic anisotropy energy it is found that both types of temperature-driven reorientation transitions, from out-of-plane to in-plane ("Fe-type") and from in-plane to out-of-plane ("Ni-type") magnetization are possible within the generalized Hubbard films.
107

Development of new embedding techniques for strongly correlated electrons : from in-principle-exact formulations to practical approximations. / Nouvelles techniques d'embedding pour les électrons fortement corrélés : de la formulation exacte au développement d'approximations

Senjean, Bruno 24 September 2018 (has links)
Cette thèse traite du développement et de l’implémentation de nouvelles méthodes visant à décrire la corrélation électronique forte dans les molécules et les solides. Après avoir introduit l’état de l’art des méthodes utilisées en chimie quantique et en physique de la matière condensée, une nouvelle méthode hybride combinant théorie de la fonction d’onde et théorie de la fonctionnelle de la densité (DFT) est présentée et s’intitule “site-occupation embedding theory” (SOET). Celle-ci est appliquée au modèle de Hubbard à une dimension. Ensuite, le problème du gap fondamental est revisité en DFT pour les ensembles, où la dérivée discontinue est réécrite comme une fonctionnelle de la densité de l'état fondamental. Enfin, une extension à la chimie quantique est proposée, basée sur une fonction d’onde de séniorité zéro complémentée par une fonctionnelle de la matrice densité, et exprimée dans la base des orbitales naturelles. / The thesis deals with the development and implementation of new methods for the description of strong electron correlation effects in molecules and solids. After introducing the state of the art in quantum chemistry and in condensed matter physics, a new hybrid method so-called ``site-occupation embedding theory'' (SOET) is presented and is based on the merging of wavefunction theory and density functional theory (DFT). Different formulations of this theory are described and applied to the one-dimensional Hubbard model. In addition, a novel ensemble density functional theory approach has been derived to extract the fundamental gap exactly. In the latter approach, the infamous derivative discontinuity is reformulated as a derivative of a weight-dependent exchange-correlation functional. Finally, a quantum chemical extension of SOET is proposed and based on a seniority-zero wavefunction, completed by a functional of the density matrix and expressed in the natural orbital basis.
108

Transições de fases quânticas em sistemas bosônicos fortemente correlacionados / Quantum phase transitions in strongly correlated bosonic systems

Herazo Warnes, Jesus Maria, 1982- 09 February 2011 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física "Gleb Wataghin" / Made available in DSpace on 2018-09-24T13:52:11Z (GMT). No. of bitstreams: 1 HerazoWarnes_JesusMaria_D.pdf: 4836710 bytes, checksum: 5b7290f1db20bc31b153f3e7202fff39 (MD5) Previous issue date: 2011 / Resumo: A questão da natureza das transições de fases de sistemas de redes de bósons tem se tornado cada vez mais urgente à vista da capacidade de carregamento de átomos ultrafrios em redes ópticas. Nesta tese, tentamos avançar este conhecimento através do estudo de 3 modelos básicos de redes de bósons interagentes. Inicialmente, determinamos o diagrama de fases c as propriedades físicas do modelo bosônico de impureza única de Anderson. Este modelo é interessante tanto em si mesmo quanto por causa de sua relação com outras abordagens teóricas tais como a teoria dinâmica de campo médio bosônica. Usamos como estratégia a inclusão de um pequeno campo externo acoplado ao parâmetro de ordem superfluido, que quebra a simetria global de calibre do modelo. Desta forma, foi possível estudar a transição de condensação de Base-Einstein através do critério de quebra espontânea de simetria global de calibre. Outras quantidades como a ocupação da impureza, o desvio padrão da ocupação e a susceptibilidade com respeito ao campo externo também foram calculadas, caracterizando a transição de fase do modelo. Alguns desses resultados foram comparados com aqueles já obtidos na literatura através do grupo de renormalização numérico. Encontramos bom acordo entre os dois métodos. O segundo estudo realizado nesta tese refere-se ao comportamento crítico do modelo de Bose-Hubbard desordenado através da chamada teoria de campo médio estocástica. O objeto central dessa teoria de campo médio é a distribuição de parâmetros de ordem P(?). Estudos numéricos estabelecem que perto da linha crítica que separa as fases superfluida e vidro de Base do modelo, essa distribuição exibe uma grande região com comportamento de lei de potência P(?) ~ ? ^-(1+ß_c), onde ß_c < 1. Usando esse comportamento como tentativa, obtivemos analiticamente tanto a fronteira de fases quanto o valor do expoente crítico da lei de potência ß_c , encontrando um razoável acordo com os resultados numéricos e avançando o entendimento da natureza da transição de fase específica ao modelo desordenado. Finalmente, o modelo de Bose-Hubbard desordenado para partículas de spin-1 foi estudado dentro da teoria de campo médio estocástica. As distribuições de probabilidade de várias quantidades físicas como o parâmetro de ordem superfluido, o desvio padrão da ocupação por sítio, a fração do condensado, o quadrado do operador de spin, bem como seus valores médios, foram determinados para as três fases do modelo, a saber, o superfluido polar, o isolante de Mott e o vidro de Bose. Uma completa caracterização das propriedades físicas dessas fases e das transições de fase entre elas foi estabelecida / Abstract: The question of the nature of phase transitions of systems of lattice bosons has become increasingly more pressing in view of the capability of loading ultracold atoms in opticallattices. In this thesis we try to advance this understanding through the study of 3 basic models of interacting lattice bosons. Initially, we determined the phase diagram and physical properties of the bosonic singleimpurity Anderson model. This model is interesting both in its own right and because of its relation to other theoretical approaches such as the bosonic dynamical field theory method. We used as strategy the inclusion of a small external field coupled to the superfluid order parameter, which breaks the global gauge symmetry of the model. Thus, it was possible to study the Base-Einstein condensation transition through the criterion of the onset of spontaneous broken global gauge symmetry. Other quantities such as the occupation of the impurity, the standard deviation of the occupation and the susceptibility with respect to the external! Field were calculated characterizing the phase transition in the model. Some of the results were compared with those already reported in the literature, obtained with tic numerical renormalization group. We found good agreement between the two methods. The second study carried out in this thesis concerned the critical behavior of the disordered Bose-Hubbard model within the so-called stochastic mean-field theory. The central object of this mean-field theory is the distribution of order parameters P(?). Numerical studies establish that near the critical line separating the superfluid and Bose glass phases of this model, this distribution shows a wide region of power-law behavior P(?) ~ ? ^-(1+ß_c), where ß_c < 1. Using this behavior as an Ansatz, we obtained analytically both the phase boundary and the value of the critical power-law exponent ß_c, finding a reasonably good agreement with the numerical results and thus shedding new light on the nature of this phase transition specific to disordered model. Finally, the disordered Bose-Hubbard model for spin-1 particles was studied within the stochastic mean-field theory. The probability distributions of various physical quantities, such as the superfluid order parameter, the standard deviation of the occupation per site, the condensate fraction, the square of the spin operator, as well as their average values, were determined for the three phases of the model, namely, the polar superfluid, the Mott insulating and the Bose glass phases. A complete characterization of the physical properties of these phases and the phase transitions between them was then established / Doutorado / Física da Matéria Condensada / Doutor em Ciências
109

Zur Theorie von Korrelations- undTemperatureffekten in Spektroskopien

Wegner, Torsten 10 October 2000 (has links)
Die Untersuchung von korrelationsinduzierten Effekten, wie beispielsweise der kollektiven magnetischen Ordnung, verlangt einen Einblick in die elektronische Struktur der Festkörper. Hier stehen mit den Ein-Teilchen-Spektroskopien (Photoemission und inverse Photoemission) sowie den Zwei-Teilchen-Spektroskopien (Auger-Elektronen- und Appearance-Potential-Spektroskopien) nützliche experimentelle Werkzeuge zur Verfügung. Eine adäquate Interpretation der experimentell ermittelten Spektren erfordert die Berücksichtigung (i) der elektronischen Korrelationen, (ii) der orbitalen Entartung sowie (iii) der Übergangsmatrixelemente. Der vorliegenden Arbeit liegt ein Multiband-Hubbard-Modell zugrunde, das die Hopping- und Hybridisierungsprozesse der für die 3d-Übergangsmetalle relevanten Orbitale (4s-, 4p- und 3d-Orbitale) und die lokalen Coulomb-Wechselwirkungen der stark lokalisierten 3d-Elektronen beschreibt. Die Hopping- und Hybridisierungsparameter werden Bandstrukturrechnungen (lokale Dichteapproximation der Dichtefunktionaltheorie) entnommen. Als Ein-Teilchen-Basis werden quasiatomare Orbitale verwendet, deren hohe Symmetrie es erlaubt, die vollständige lokale 3d-Coulomb-Matrix mithilfe von lediglich drei Zahlen (effektive Slater-Parameter) zu parametrisieren. Fasst man die effektiven Slater-Parameter zu einer mittleren direkten Wechselwirkungsstärke U und einer mittleren Austauschwechselwirkungsstärke J zusammen, so sind U und J die beiden einzigen Parameter des Modells, die dann an experimentelle Daten (z.B. Spinmoment bei T=0K) angepasst werden können. Für die Berechnung der Ein-Teilchen-Green-Funktion, die die Photoemissionsspektren bestimmt, wird die Störungstheorie zweiter Ordnung um die Hartree-Fock-Lösung verwendet und damit die Magnetisierung als Funktion der Temperatur für Nickel berechnet. Die Kombination der errechneten Green-Funktion mit den Übergangsmatrixelementen der Photoemission gestattet dann einen quantitiven Vergleich mit experimentellen spin- und winkelaufgelösten Daten für endliche Temperaturen und verschiedene Photonenenergien. Die Zwei-Teilchen-Spektren lassen sich als Funktionale der Ein-Teilchen-Green-Funktion auffassen. Durch die Verwendung sogenannter Leiter-Näherungen werden nicht nur die Wechselwirkungen der an den Übergangsprozessen beteiligten Teilchen mit dem Restsystem (Selbstenergieeinschübe) berücksichtigt, sonderen auch die Wechselwirkungen der direkt am Prozess beteiligten Teilchen untereinander (Endzustandskorrelationen). Die Verwendung des Zwei-Stufen-Modells impliziert jedoch, dass die Valenzbandelektronen das Potential des zuvor erzeugten Core-Lochs abschirmen werden, was sich insbesondere auf die Auger-Spektren auswirkt. Am Beispiel der Appearance-Potential-Spektren wird die vielteilchentheoretisch berechnete Green-Funktion mit entsprechenden Übergangsmatrixelementen kombiniert. Die resultierenden Spektren sind für alle betrachteten Temperaturen in sehr guter Übereinstimmung mit gemessenen Spektren. / The investigation of correlation-induced effects, as for example the collective magnetic order, requires an insight into the electronic structure of solids. In this context the one-particle spectroscopies (photoemission and inverse photoemission) as well as the two-particle spectroscopies (Auger electron and appearance potential spectroscopies) represent useful experimental tools. An adequate interpretation of the experimentally determined spectra requires the consideration of (i) electronic correlations, (ii) orbital degeneration as well as (iii) transition-matrix elements. The present work uses a multi-band Hubbard model, which describes the hopping and hybridization processes of the relevant orbitals in the 3d-transition metals (4s, 4p and 3d orbitals) and the local Coulomb interactions of the strongly localized 3d electrons. The hopping and hybridization parameters are taken from band-structure calculations (local density approximation of the density functional theory). As one-particle basis quasi-atomic orbitals are used, whose high symmetry permits it to parameterize the complete local Coulomb-matrix among 3d-electrons by only three numbers (effective Slater parameters). If one combines the effective Slater parameters into an averaged direct interaction strength U and an averaged exchange interaction strength J, then U and J are the only parameters of the model, which can be fitted to experimental data (e.g. spin moment at T=0K). For the calculation of the one-particle Green function, which determines the photoemission spectra, the second order perturbation theory around the Hartree-Fock solution is used. Within this framework the magnetization as function of the temperature is calculated for nickel. The combination of the calculated Green function and the photoemission transition-matrix elements permits a quantitative comparison with spin- and angle-resolved measurements for finite temperatures and different photon energies. The two-particle spectra can be understood as functionals of the one-particle Green function. Due to the usage of so called ladder approximations one is able to account not only for the correlations between the considered particles and the remainder system (self-energy insertations) but also for the correlations among those particles directly involved in the transition (final state correlations). The usage of the two-step model implies, however, that the valence band electrons tend to screen the additional potential of the core hole created before, which in particular affects the Auger spectra. As an example, the appearance potential spectra of nickel are calculated by combining the corresponding Green function with appropriate transition-matrix elements. The resulting spectra are in a very good agreement with measured spectra for all temperatures.
110

Electronic structure and exchange integrals of low-dimensional cuprates

Rosner, Helge 19 September 1999 (has links) (PDF)
The physics of cuprates is strongly influenced by the dimension of the cooper-oxygen network in the considered crystals. Due to the rich manifoldness of different network geometries realized by nature, cuprates are ideal model systems for experimental and theoretical studies of low-dimensional, strongly correlated systems. The dimensionality of the considered model compounds varies between zero and three with a focus on one- and two-dimensional compounds. Starting from LDA band structure calculations, the relevant orbitals for the low-energy physics have been characterized together with a discussion of the chemical bonding in the investigated compounds. By means of a systematic approach for various compounds, the influence of particular structural components on the electronic structure could be concluded. For the undoped cuprate compounds, paramagnetic LDA band structure calculations yield a metallic groundstate instead of the experimentally observed insulating behavoir. The strong correlations were taken into account using Hubbard- or Heisenberg-like models for the investigation of the magnetic couplings in cuprates. The necessary parameters were obtained from tight-binding parameterizations of LDA band structures. Finallly, several ARPES as well as XAS measurements were interpreted. The present work shows, that the combination of experiment, LDA, and model calculations is a powerful tool for the investigation of the electronic structure of strongly correlated systems.

Page generated in 0.0456 seconds