• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Контекстно зависно препознавање говора у интеракцији између човека и машине / Kontekstno zavisno prepoznavanje govora u interakciji između čoveka i mašine / Context-Dependent Speech Recognition in Human-Machine Interaction

Mišković Dragiša 02 June 2017 (has links)
<p>Поред великог значаја контекстуалних информација при разумевању<br />говора, њихова обрада и употреба у савременим системима за<br />аутоматско препознавање говора је веома ограничена, што знатно<br />нарушава перформансе препознавања у реалним условима употребе.<br />Стога, уколико желимо да се карактеристике ових система приближе<br />људским, неопходно је укључити контекст у адекватном обиму.<br />У овој тези је представљен нови методолошки приступ контекстно<br />зависном препознавању говора у интеракцији између човека и машине.<br />На методолошком нивоу, овај приступ је хибридан, јер интегрише<br />статистичке и симболичке методе, и когнитивно инспирисан, јер узима у<br />обзир увиде у резулатате ис траживања из области неурокогнитивних<br />наука. Основни принцип је да се оцењивање хипотеза система за<br />препознавање врши на основу њихове контекстуалне усклађености,<br />информационог садржаја и семантичке исправности.<br />Приступ је илустрован прототипским имплементацијама за конкретне<br />домене интеракције.</p> / <p>Pored velikog značaja kontekstualnih informacija pri razumevanju<br />govora, njihova obrada i upotreba u savremenim sistemima za<br />automatsko prepoznavanje govora je veoma ograničena, što znatno<br />narušava performanse prepoznavanja u realnim uslovima upotrebe.<br />Stoga, ukoliko želimo da se karakteristike ovih sistema približe<br />ljudskim, neophodno je uključiti kontekst u adekvatnom obimu.<br />U ovoj tezi je predstavljen novi metodološki pristup kontekstno<br />zavisnom prepoznavanju govora u interakciji između čoveka i mašine.<br />Na metodološkom nivou, ovaj pristup je hibridan, jer integriše<br />statističke i simboličke metode, i kognitivno inspirisan, jer uzima u<br />obzir uvide u rezulatate is traživanja iz oblasti neurokognitivnih<br />nauka. Osnovni princip je da se ocenjivanje hipoteza sistema za<br />prepoznavanje vrši na osnovu njihove kontekstualne usklađenosti,<br />informacionog sadržaja i semantičke ispravnosti.<br />Pristup je ilustrovan prototipskim implementacijama za konkretne<br />domene interakcije.</p> / <p>Although the importance of contextual information in speech recognition has<br />been acknowledged for a long time now, it remained clearly underutilized<br />even in state-of-the-art speech recognition systems. This thesis introduces a<br />novel, methodologically hybrid approach to the research question of contextdependent<br />speech recognition in human-machine interaction. To the extent<br />that it is hybrid, the approach integrates aspects of both statistical and<br />representational paradigms. The aim of this thesis is to extend the standard<br />statistical pattern matching approach with a cognitively-inspired and<br />analytically tractable model with explanatory power. This methodological<br />extension allows for accounting for contextual information which is otherwise<br />unavailable in speech recognition systems, and using it to improve postprocessing<br />of recognition hypotheses. The thesis introduces an algorithm for<br />evaluation of recognition hypotheses, illustrates it for concrete interaction<br />domains, and discusses its implementation within two prototype<br />conversational agents.</p>

Page generated in 0.1211 seconds