• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling proportions to assess the soil nematode community structure in a two year alfalfa crop

Zbylut, Joanna January 1900 (has links)
Master of Science / Department of Statistics / Leigh Murray / The southern root-knot nematode (SRKN) and the weedy perennials, yellow nutsedge (YNS) and purple nutsedge (PNS) are simultaneously occurring pests in the irrigated agricultural soils of southern New Mexico. Previous research has very well characterized SRKN, YNS and PNS as a mutually-beneficial pest complex and has revealed their enhanced population growth and survival when they occur together. The density of nutsedge in a field could be used as a predictor of SRKN juveniles in the soil. In addition to SRKN, which is the most harmful of the plant parasitic nematodes, in southern New Mexico, other species or categories of nematodes could be identified and counted. Some of them are not as damaging to the plant as SRKN, and some of them may be essential for soil health. The nematode species could be grouped into categories according to trophic level (what nematodes eat) and herbivore feeding behavior (how herbivore nematodes eat). Subsequently, three ratios of counts were calculated for trophic level and for feeding behavior level to investigate the soil nematode community structure. These proportions were modeled as functions of the weed hosts YNS and PNS by generalized linear regression models using the logit link function and three probability distributions: the Binomial, Zero Inflated Binomial (ZIB) and Binomial Hurdle (BH). The latter two were used to account for potential high proportions of zeros in the data. The SAS NLMIXED procedure was used to fit models for each of the six sampling dates (May, July and September) over the two years of the alfalfa study. General results showed that the Binomial pmf generally provided the best fit, indicating lower zero-inflation than expected. Importance of YNS and PNS predictors varied over time and the different ratios. Specific results illustrate the differences in estimated probabilities between Binomial, ZIB and BH distributions as YNS counts increase for two selected ratios.

Page generated in 0.1106 seconds