• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 35
  • 19
  • 12
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 281
  • 171
  • 111
  • 82
  • 82
  • 82
  • 45
  • 42
  • 29
  • 24
  • 22
  • 22
  • 22
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The kihara potential function parameters of methane, ethane, propane, and i-butane: The effects on clathrate hydrate structure determination

Avaji, S., Javanmardi, J., Mohammadi, A.H., Rahmanian, Nejat, De-Gald, Vladislav 04 January 2023 (has links)
Yes / Gas hydrates, or clathrate hydrates, are solid crystalline compounds, which are formed by combination of water and gas and/or some volatile liquid molecules. Prediction of hydrate stability/dissociation/equilibrium conditions of natural gases is important in separation processes, gas storage, and in preventing blockage of gas transmission pipelines. In this study, initially, the different sets of the Kihara Potential Function Parameters, KPFP, reported in the literature were used to predict the experimental hydrate dissociation conditions of methane, ethane, propane and i-butane and mixtures of these four compounds. In most cases, however, based on these sets of KPFP, the hydrate structure cannot be predicted correctly. Consequently due to incorrect estimation of the hydrate structure, especially for natural gas mixture, the predicted hydrate dissociation conditions are found inaccurate. For overcoming this fault and by using a genetic algorithm, a new set of KPFP were optimized based on the new definition of the objective function considering hydrate structure. The results show good agreement with experimental data, both in the prediction of hydrate dissociation conditions and hydrate structure.
52

Effets de tensioactifs ioniques sur les interfaces et l’agglomération d’hydrates de gaz.. / Effects of ionic surfactants on the interfaces and the gas hydrates agglomeration.

Delroisse, Henry 15 December 2017 (has links)
Lors de la production d’hydrocarbures, les conditions de pression et température dans les conduites peuvent être favorables à la formation d’hydrates de gaz (composés cristallins formés par l’association de molécules d’eau et de gaz). Leur formation peut entraîner le bouchage des conduites et mener à l’arrêt de la production, entraînant d’importantes pertes économiques. Pour remédier au risque « hydrate », les pétroliers disposent de diverses méthodes dont l’utilisation d’additifs antiagglomérants. Les antiagglomérants sont des tensioactifs capables de s’adsorber à la surface des cristaux d’hydrate et de les maintenir dispersés dans la phase hydrocarbonée, qui est généralement majoritaire. L’objectif de cette thèse est de progresser dans la compréhension des mécanismes d’action de tensioactifs ioniques pour la prévention de l’agglomération d’hydrates de gaz. Plusieurs tensioactifs cationiques ont été étudiés sur un hydrate de cyclopentane (CP) (qui se forme à pression atmosphérique) et sur un hydrate de méthane/propane (qui se forme sous pression).Pour les deux hydrates, l’effet des tensioactifs sur la morphologie des cristaux et sur leur mouillabilité a été étudié, et leur performance antiagglomérante (AA) a été évaluée en réacteur agité pour différentes conditions et compositions des systèmes. Les tensioactifs conduisant à la formation de cristaux individuels présentent les meilleures performances AA. Les observations montrent qu’il n’est pas indispensable que les tensioactifs rendent les cristaux mouillables à l’huile pour qu’ils procurent une bonne protection contre l’agglomération dans un système agité où l’huile est la phase majoritaire. Nous avons vu que la modification (par ajout de sel par exemple) de l’environnement physicochimique des molécules tensioactives peut jouer un rôle déterminant sur leurs propriétés AA. De même, la modification de la structure des molécules (nature du contre-ion, longueur des chaînes hydrocarbonées) impacte leur adsorption sur l’hydrate, la morphologie et la mouillabilité des cristaux, et par suite leur performance AA. Les principaux facteurs identifiés pour la bonne performance d’une molécule tensioactive sont sa capacité à se fixer efficacement et en quantité suffisante à la surface de l’hydrate, et à rendre les cristaux d’hydrate hydrophobes, ou dans le cas où il les rend hydrophiles d’abaisser fortement la tension interfaciale entre les phases aqueuse et huileuse de manière à réduire l’intensité des forces capillaires entre les particules. Enfin, nous avons pu établir une corrélation entre les observations faites à l’échelle microscopique et la performance AA des tensioactifs évaluée à l’échelle macroscopique. Ce travail confirme que l’hydrate de CP est globalement un bon modèle pour des évaluations simples de la performance de molécules tensioactives. L’utilisation de l’hydrate de CP présente néanmoins des limitations pour mener des études à forts sous-refroidissements et avec de grandes fractions volumiques d’eau. / Pressure and temperature conditions encountered in the pipelines of hydrocarbons production may be favorable to the formation of gas hydrates (crystalline compounds formed by the association of molecules of gas and water). Their agglomeration in pipelines may form plugs and lead to production shutdowns and cause significant economic losses. To prevent it, oil and gas companies use various methods and more particularly anti-agglomerant additives. Anti-agglomerants are surfactants that can adsorb at the hydrate crystals surface and keep them dispersed in a hydrocarbon phase. The objective of this thesis is to progress in the understanding of mechanisms of action of ionic surfactant to prevent the gas hydrates agglomeration. Several cationic surfactants were studied on a cyclopentane (CP) hydrate (formed at atmospheric pressure) and on a methane/propane hydrate (formed under pressure). For both hydrates, the effect of surfactants on the crystals morphology and on their wettability was investigated, and their anti-agglomerant (AA) performance was evaluated in an agitated reactor for systems at different conditions and compositions. The surfactants leading to the formation of individual crystals had the best AA performances. In order to have a good protection against the agglomeration, it is not necessary that the surfactants make the crystals oil wettable in a system where the oil phase is in excess. We showed that the modification (by the addition of salt for example) of the physicochemical environment of surfactant molecules plays an important role on their AA properties. Similarly, the modification of the structure of molecules (counter-ion nature, length of the hydrocarbon chains) affects their adsorption on the hydrate, the morphology and wettability of crystals and consequently their AA performance. The main factors identified for a good performance of a surfactant molecule are its capacity to be efficiently fixed and in a sufficient amount on the hydrate surface in order to make the hydrate crystals hydrophobic. In the case where it makes the hydrate hydrophilic, the surfactant has to strongly reduce the interfacial tension between the aqueous and oil phases and then reduce the intensity of capillary forces between hydrate particles. Lastly, we set a correlation between the observations done at the microscopic scale and the AA performance of surfactants evaluated at the macroscopic scale. This work confirms that the CP-hydrate is overall a good model for a simple evaluation of the surfactant molecules performance. However, the use of the CP-hydrate has some limitations to conduct studies at high subcooling and watercut.
53

COMPARISON OF ORAL KETAMINE-MIDAZOLAM AND CHLORAL HYDRATE-MEPERIDINE-HYDROXYZINE SEDATION REGIMENS IN PEDIATRIC DENTISTRY

Merrell, David 01 May 2013 (has links)
Purpose: The purpose of this study was to create an experimental design to compare the regimen of ketamine-midazolam to chloral hydrate-meperidine-hydroxyzine for moderate oral conscious sedation. Methods: Patients between 36 and 83 months of age have been randomly assigned to receive 1 of the 2 regimens. Dosages, times, and vital signs will be recorded. Procedures will be recorded on video for assessment of sedation level and behavior. Patients will be contacted to evaluate postoperative sleeping, discomfort, and amnesia. Data will be analyzed using two-group t-tests (TOST) of equivalence in means to compare the two groups across the study period. Results: Patient enrollment of the study has begun. In order not to break the blind randomized code, future data analysis is pending final data collection. Conclusions: This study will assist clinicians by establishing if a regimen of ketamine-midazolam is a comparable alternative to a regimen of chloral hydrate-meperidine-hydroxyzine for sedations.
54

The dehydration of pharmaceutical hydrates under mechanical load

Friedman, Ross Aaron 01 August 2014 (has links)
Nearly one-third of all pharmaceutical substances on the market are able to sorb water into their crystal lattices to form hydrates, which can often compromise stability during processing and/or storage[1]. The tendency of a hydrate to lose its water of crystallization during the manufacturing process of tablet compression is of particular concern to formulation scientists. The amount of water freed as a function of increasing compaction pressure can be explained by the mobility of water within the compact. The mobility of water is determined by the size and shape of the crystal lattice, the numbers and strengths of the hydrogen bonds, and the presence of high-energy sites of disorder[2]. Due to their differing crystal structures, theophylline monohydrate (THM), citric acid monohydrate (CAM), theophylline-water-citric acid cocrystal hydrate (CATHP hydrate), and dicalcium phosphate dihydrate (DCPD) make for interesting model systems to examine the dehydration under mechanical load. The thermal dehydration of both powders and tablets was carried out via thermal gravimetric analysis (TGA). By comparing the temperatures required to start removal of water loss from the powder to that of the tablet, the average amount of water of crystallization that is freed by the compaction process may be quantified. The average amount of water freed by the compaction process results from a competition between the mechanically-induced disorder of the crystal structure that increases the molecular mobility of water within the tablets, and the trapping of water within the interparticulate void spaces at high compaction pressures. The compressibilities, compactabilities, and tabletabilities of the materials were calculated as a function of increasing compaction pressure. The consolidation of the powder bed under pressure was modeled by out-of-die Heckel Analysis which demonstrated the ease of deformation of the model compounds. XRD was utilized to show the decrease in overall order of the crystal lattice as a result of compression as well as anisotropy within the tablets. Crystallographic approaches were utilized to demonstrate the compactness of the crystal structure, and how it affects water mobility. Relaxation pulse experiments (T1, T2) utilizing solid-state NMR were used to directly probe the mobilities of the water molecules within the crystal lattice of THM. The results from T1 and T2 relaxation experiments directly measure the change in molecular mobility of water within the tablets as a function of compaction pressure. This provided independent verification of the trends in molecular mobility and average water freed as a function of compaction pressure observed during TGA dehydration. Raman spectroscopy was used to indirectly measure the polarizability and vibrational motions of THM, and these results corroborate those obtained from ssNMR and TGA dehydration experiments. Overall, this work highlights the potential impact that tablet compression can have on API hydrate stability. 1. Hilfiker R (editor). 2006. Polymorphism in the Pharmaceutical Industry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co, KGaA. 2. Byrn SR, Pfeiffer RR, Stowell JG. 1999. Solid-state chemistry of drugs. SSCI, Inc.
55

Etude de la cinétique de formation des hydrates de méthane dans les fluides de forage off-shore par analyse calorimétrique différentielle haute pression

Hamed, Néjib 10 November 2006 (has links) (PDF)
Les fluides de forage à base d'huile sont utilisés lors d'opérations de forage off-shore. Ils permettent de lubrifier l'outil de forage, d'évacuer les déblais ainsi que de maintenir une pression hydrostatique dans le puits. Avec des forages off-shore de plus en plus profonds, les conditions thermodynamiques sont réunies (haute pression et basse température) pour la formation d'hydrates de gaz dans les fluides de forage. L'analyse calorimétrique différentielle sous haute pression est une technique qui a fait ses preuves pour l'étude de l'équilibre thermodynamique du système triphasique gaz - eau - hydrate. Elle a été retenue pour étudier la cinétique de formation d'hydrates car elle est particulièrement bien adaptée aux milieux dispersés complexes. Une étude a été menée en faisant varier la pression de 11 à 40 MPa, le degré de sous-refroidissement de 14 à 30 K et en étudiant la formation d'hydrates dans trois fluides de composition différente. L'étude expérimentale a mis en évidence l'effet des paramètres cinétiques étudiés. L'utilisation de modèles classiques a permis de représenter les résultats expérimentaux pour des faibles et des fortes forces motrices. On a ensuite développé un modèle cinétique qui combine la théorie de la cristallisation, l'aspect statistique de la nucléation et les bilans de matière sur les espèces présentes dans le système.
56

Seismic sequence stratigraphy and tectonic evolution of southern hydrate ridge

Chevallier, Johanna 18 February 2004 (has links)
A 3D seismic volume was acquired summer 2000 over the southern end of Hydrate Ridge (FIR), an anomalously shallow ridge 100 km offshore Newport, Oregon. The survey followed a succession of scientific expeditions aimed at studying the gas hydrates present in the shallow subsurface that gave the name to the ridge. This thesis consists of a seismic sequence analysis of the high-resolution (125 Hz) 3D survey. Identification of seismic units and interpretation of depositional sequences observed on the seismic sections is presented. The sequence analysis is compared with the results from nine sites cored during ODP Leg 204 during summer 2002. The first objective is to document in detail the stratigraphy of the ridge so that we can compare it with the gas hydrate distribution. The second is to reconstruct the structural evolution through time of this complex anticline as inferred from the depositional history. The result is a time series of structural evolutionary cross-sections as well as a series of paleo-bathymetric maps revealing the development of and interplay between the structures now buried in the subsurface of southern HR. The structural evolutionary diagrams show the existence of three anticlines, interpreted as thrust-related folds. They formed at the deformation front and controlled the distribution and deformation of the sediments during the Pleistocene. The current southern HR started its uplift less than 0.5 Ma. A seismic relict in the form of a double BSR is a witness to the evolution of the gas hydrate system of HR. It confirms the recent uplift of the ridge and consequent shallowing of the base of the gas hydrate stability zone (GHSZ). Further detailed studies of the stratigraphy reveal stratigraphic controls on the fluid flow, which in turn control the distribution of gas hydrates. Analysis of the amplitude map of the bottom-simulating reflector (BSR), which is a proxy for the free gas distribution, shows a relationship between anticlinal features within the older strata (older than 1.6 Ma) and strong amplitude anomalies of the BSR, which confirm previous observations suggesting a very low permeability for the young slope-basin sediments and an accumulation of gas within the older sediments underneath. / Graduation date: 2004
57

Temporal changes in gas hydrate mound topography and ecology: deep-sea time-lapse camera observations

Vardaro, Michael Fredric 30 September 2004 (has links)
A deep-sea time-lapse camera and several temperature probes were deployed on the Gulf of Mexico continental shelf at a biological community associated with a gas hydrate outcropping to study topographic and hydrologic changes over time. The deployment site, Bush Hill (GC 185), is located at 27°47.5' N and 91°15.0' W at depths of ~540m. The digital camera recorded one still image every six hours for three months in 2001, every two hours for the month of June 2002 and every six hours for the month of July 2002. Temperature probes were in place at the site for the entire experimental period. The data recovered provide a record of processes that occur at gas hydrate mounds. Biological activity was documented by identifying the fauna observed in the time-lapse record and recording the number of individuals and species in each image. 1,381 individual organisms representing 16 species were observed. Sediment resuspension and redistribution were regular occurrences during the deployment periods. By digitally analyzing the luminosity of the water column above the mound and plotting the results over time, the turbidity at the site was quantified. A significant diurnal pattern can be seen in both luminosity and temperature records, indicating a possible tidal or inertial component to deep-sea currents in this area. Contrary to expectations, there was no major change in shape or size of the gas hydrate outcrop at this site on the time frame of this study. This indicates that this particular mound was more stable than suggested by laboratory studies and prior in situ observations. The stable topography of the gas hydrate mound combined with high bacterial activity and sediment turnover appears to focus benthic predatory activity in the mound area. The frequency and recurrence of sediment resuspension indicates that short-term change in the depth and distribution of surface sediments is a feature of the benthos at the site. Because the sediment interface is a critical environment for hydrocarbon oxidation and chemosynthesis, short-term variability and heterogeneity may be important characteristics of these settings.
58

Etude du captage du CO2 par la cristallisation des hydrates de gaz : Application au mélange CO2-N2

Bouchemoua, Amina 16 July 2012 (has links) (PDF)
Le captage du CO2 représente un enjeu industriel majeur et scientifique du siècle. Il existe différentes méthodes de séparation et de captage du CO2, telles que, l'absorption aux amines et l'adsorption. Bien que ces processus soient bien développés au niveau industriel, ils sont très consommateurs d'énergie. Le procédé de captage du CO2 par formation d'hydrates de gaz consomme moins d'énergie et semble être très prometteur pour la séparation du CO2 Les hydrates de gaz sont des composés cristallins de la famille des clathrates dans lesquels des molécules d'eau se relient entre elles par des liaisons hydrogène pour former des cavités qui peuvent contenir des molécules de gaz. La formation d'hydrates de gaz est favorisée par une haute pression et basse température.Cette étude est menée dans le cadre du projet ANR SECOHYA. L'objectif est d'étudier les conditions thermodynamiques et cinétiques du procédé de captage du CO2 par cristallisation d'hydrates de gaz.Premièrement, nous avons développé un dispositif expérimental pour réaliser des expériences afin de déterminer les conditions thermodynamiques et cinétiques de formation des hydrates mixtes CO2-N2 dans l'eau comme phase liquide. Nous avons montré que la pression opératoire peut être très élevée et la température très basse. Pour la faisabilité du projet, nous avons utilisé le TBAB (TétraButylAmmonium Bromure) en tant qu'additif thermodynamique dans la phase liquide. L'utilisation du TBAB peut réduire considérablement la pression opératoire.Dans la deuxième partie de cette étude, nous avons présenté un modèle thermodynamique, basé sur le modèle de van der Waals et Platteeuw. Ce modèle permet de prédire les conditions d'équilibre thermodynamique de formation des hydrates de gaz. Des données expérimentales d'équilibre de mélanges CO2-CH4 et de CO2-N2 sont présentées et comparées à des résultats théoriques.
59

Solubility and Pseudo-polymorphic Transitions of L-Serine in Water-Methanol System

Luk, Chee-wei Jennifer 14 January 2005 (has links)
The research addressed in this thesis is focused on the solubility and pseudo-polymorphic transition of L-serine in mixed water-methanol systems. Cooling re-crystallizations were carried out that varied both temperature and methanol concentration. Solubilities were measured with high-performance liquid chromatography. It is found that the solubility increased with increase in temperature and decreased drastically with methanol concentration. The effect of temperature at which there is a transition of L-serine crystals from the rod-shaped (anhydrous) form to hexagonal (monohydrate) form was confirmed and that transition temperatures decreased with methanol concentrations in a non-linear manner. The solubility data were correlated and plotted using the vant Hoff equation and the enthalpy and entropy of dissolution were determined. These values increased with increase in methanol concentration. The solid crystals were analyzed by optical microscopy and powder X-ray diffraction. The rod-shaped crystals were identified to be anhydrous L-serine, while the hexagonal crystals were L-serine monohydrate. Dehydration of the monohydrated crystals in their solid-state was examined and the onset of such phenomenon was known to start once the crystals were removed from the solutions.
60

Drilling Through Gas Hydrates Formations: Managing Wellbore Stability Risks

Khabibullin, Tagir R. 2010 August 1900 (has links)
As hydrocarbon exploration and development moves into deeper water and onshore arctic environments, it becomes increasingly important to quantify the drilling hazards posed by gas hydrates. To address these concerns, a 1D semi-analytical model for heat and fluid transport in the reservoir was coupled with a numerical model for temperature distribution along the wellbore. This combination allowed the estimation of the dimensions of the hydratebearing layer where the initial pressure and temperature can dynamically change while drilling. These dimensions were then used to build a numerical reservoir model for the simulation of the dissociation of gas hydrate in the layer. The bottomhole pressure (BHP) and formation properties used in this workflow were based on a real field case. The results provide an understanding of the effects of drilling through hydratebearing sediments and of the impact of drilling fluid temperature and BHP on changes in temperature and pore pressure within the surrounding sediments. It was found that the amount of gas hydrate that can dissociate will depend significantly on both initial formation characteristics and bottomhole conditions, namely mud temperature and pressure. The procedure outlined suggested in this work can provide quantitative results of the impact of hydrate dissociation on wellbore stability, which can help better design drilling muds for ultra deep water operations.

Page generated in 0.061 seconds