1 |
Efficiency of soil aquifer treatment in the removal of wastewater contaminants and endocrine disruptors : a study on the removal of triclocarban and estrogens and the effect of chemical oxygen demand and hydraulic loading rates on the reduction of organics and nutrients in the unsaturated and saturated zones of the aquiferEssandoh, Helen Michelle Korkor January 2011 (has links)
This study was carried out to evaluate the performance of Soil Aquifer Treatment (SAT) under different loading regimes, using wastewater of much higher strength than usually encountered in SAT systems, and also to investigate the removal of the endocrine disruptors triclocarban (TCC), estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). SAT was simulated in the laboratory using a series of soil columns under saturated and unsaturated conditions. Investigation of the removal of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Organic Carbon (DOC), nitrogen and phosphate in a 2 meter long saturated soil column under a combination of constant hydraulic loading rates (HLRs) and variable COD concentrations as well as variable HLR under constant COD showed that at fixed HLR, a decrease in the influent concentrations of DOC, BOD, total nitrogen and phosphate improved their removal efficiencies. It was found that COD mass loading applied as low COD wastewater infiltrated over short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. On the other hand relatively high concentrations coupled with long residence time gave better removal efficiency for organic nitrogen. Phosphate removal though poor under all experimental conditions, was better at low HLRs. In 1 meter saturated and unsaturated soil columns, E2 was the most easily removed estrogen, while EE2 was the least removed. Reducing the thickness of the unsaturated zone had a negative impact on removal efficiencies of the estrogens whereas increased DOC improved the removal in the saturated columns. Better removal efficiencies were also obtained at lower HLRs and in the presence of silt and clay. Sorption and biodegradation were found to be responsible for TCC removal in a 300 mm long saturated soil column, the latter mechanism however being unsustainable. TCC removal efficiency was dependent on the applied concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance, possibly due to its antibacterial property, as evidenced by a reduction in COD removals in the column. COD in the 2 meter column under saturated conditions was modelled successfully with the advection dispersion equation with coupled Monod kinetics. Empirical models were also developed for the removal of TCC and EE2 under saturated and unsaturated conditions respectively. The empirical models predicted the TCC and EE2 removal profiles well. There is however the need for validation of the models developed
|
2 |
Efficiency of soil aquifer treatment in the removal of wastewater contaminants and endocrine disruptors. A study on the removal of triclocarban and estrogens and the effect of chemical oxygen demand and hydraulic loading rates on the reduction of organics and nutrients in the unsaturated and saturated zones of the aquifer.Essandoh, Helen M.K. January 2011 (has links)
This study was carried out to evaluate the performance of Soil Aquifer Treatment
(SAT) under different loading regimes, using wastewater of much higher strength
than usually encountered in SAT systems, and also to investigate the removal of the
endocrine disruptors triclocarban (TCC), estrone (E1), 17¿-estradiol (E2) and 17¿-
ethinylestradiol (EE2). SAT was simulated in the laboratory using a series of soil
columns under saturated and unsaturated conditions.
Investigation of the removal of Chemical Oxygen Demand (COD), Biochemical
Oxygen Demand (BOD), Dissolved Organic Carbon (DOC), nitrogen and phosphate
in a 2 meter long saturated soil column under a combination of constant hydraulic
loading rates (HLRs) and variable COD concentrations as well as variable HLR
under constant COD showed that at fixed HLR, a decrease in the influent
concentrations of DOC, BOD, total nitrogen and phosphate improved their removal
efficiencies. It was found that COD mass loading applied as low COD wastewater
infiltrated over short residence times would provide better effluent quality than the
same mass applied as a COD with higher concentration at long residence times. On
the other hand relatively high concentrations coupled with long residence time gave
better removal efficiency for organic nitrogen. Phosphate removal though poor under
all experimental conditions, was better at low HLRs.
In 1 meter saturated and unsaturated soil columns, E2 was the most easily removed
estrogen, while EE2 was the least removed. Reducing the thickness of the
unsaturated zone had a negative impact on removal efficiencies of the estrogens
whereas increased DOC improved the removal in the saturated columns. Better
removal efficiencies were also obtained at lower HLRs and in the presence of silt
and clay.
Sorption and biodegradation were found to be responsible for TCC removal in a 300
mm long saturated soil column, the latter mechanism however being unsustainable.
TCC removal efficiency was dependent on the applied concentration and decreased
over time and increased with column depth. Within the duration of the experimental
run, TCC negatively impacted on treatment performance, possibly due to its
antibacterial property, as evidenced by a reduction in COD removals in the column.
COD in the 2 meter column under saturated conditions was modelled successfully
with the advection dispersion equation with coupled Monod kinetics. Empirical
models were also developed for the removal of TCC and EE2 under saturated and
unsaturated conditions respectively. The empirical models predicted the TCC and
EE2 removal profiles well. There is however the need for validation of the models
developed / Netherlands Organisation for International Cooperation in Higher Education (Nuffic) / The Appendix files for this thesis are unavailable online via Bradford Scholars.
|
3 |
Soil aquifer treatment of artificial wastewater under saturated conditionsEssandoh, Helen M.K., Tizaoui, Chedly, Mohamed, Mostafa H.A., Amy, G., Brdjanovic, D. January 2011 (has links)
A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L(-)(1)-135 mg L(-)(1)) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d(-)(1)-1780 mg d(-)(1) applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency.
|
Page generated in 0.0755 seconds