• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Foam accumulators: packaging and weight reduction for mobile applications

Rexer, Manuel, Kloft, Peter, Bauer, Frank, Hartig, Jakob, Pelz, Peter F. 25 June 2020 (has links)
Standardized parts like hydraulic accumulators are used in nearly every hydraulic system, in many cases even several. Therefore, even small changes in size and weight of accumulators can save considerable material costs. In mobile applications, hydraulic accumulators are used among others in hydro-pneumatic suspension systems. There is a strong focus on miniaturization and weight reduction, as the components always have to be transported with the vehicle. Energy density and energy content of conventional hydraulic accumulators cannot be maximized at the same time. This limitation can be overcome by adding a heat capacity with large surface into the gas volume of the accumulator. The heat capacity enlarges the isothermal frequency range and therefore enlarges the energy density of the accumulator at the given frequency and the given size. In this paper an experimental comparison of conventional hydraulic accumulators and accumulators with foam inserts shows, that at a specific frequency band, the stiffness of foam filled accumulators is significantly lower than of conventional accumulators. The energy density is about 11 % higher than in conventional accumulators. Consequently, a space reduction of about 18 % is possible.
2

One dimensional unsteady model of a hydropneumatic piston accumulator based on finite volume method

Kratschun, Filipp, Köhne, Jens, Kloft, Peter, Baum, Heiko, Schmitz, Katharina 25 June 2020 (has links)
Hydraulic piston accumulators play a major role especially within the field of stationary hydraulics. The calculation of the amount of hydraulic energy which can be stored in such an accumulator is crucial when it comes to a precise system design. The knowledge of the temperature and pressure within the accumulator is required in order to calculate the amount of energy to be stored. The state of the art solution to estimate the state of change of such an accumulator is the implementation of a costly measurement system within the accumulator which tracks the position of the piston. The goal of this paper is to develop and to analyse a time efficient simulation approach for the gaseous phase within a piston accumulator depending on the accumulator’s load cycle. Temperature, pressure, density and velocity profiles inside of the gaseous phase are calculated transiently in order to achieve that goal. The simulation model is derived in one dimensional environment to save computational effort. Having derived a valid model of the gaseous phase it will be possible in future works to replace the expensive position measurement system by pressure and temperature transducers and then use the model to calculate the position of the piston and therefore estimate the state of change.
3

Condition monitoring systems for hydraulic accumulators – improvements in efficiency, productivity and quality

Nisters, Christian, Bauer, Frank, Brocker, Marco 25 June 2020 (has links)
This paper addresses the necessity of a correct hydraulic accumulator pre-charge pressure for the optimum performance and in some cases even the essential function of the corresponding hydraulic application. In this context HYDAC has developed a smart product for predictive monitoring of the pre-charge pressure without any need to do a measurement on the gas side of the accumulator – the p0-Guard. The paper gives an overview on the conventional way of checking the pre-charge pressure, the function of the monitoring device and points out the benefits of a predictive monitoring of the accumulator precharge pressure. The benefits are clearly depicted by an analytical view as well as on practical example.

Page generated in 0.0674 seconds