Spelling suggestions: "subject:"hydroboration"" "subject:"tetrahydroborate""
1 |
Hydroborate chemistryMesmer, Robert E., January 1961 (has links)
Thesis (Ph.D.)--University of California, Berkeley, 1961. / "UC-4 Chemistry" -t.p. "TID-4500 (16th Ed.)" -t.p. Includes bibliographical references (p. 123-125).
|
2 |
Phosphanylborhydride und ChalkogenphosphanylborhydrideDornhaus, Franz Ralf. Unknown Date (has links)
Universiẗat, Diss., 2007--Frankfurt (Main).
|
3 |
Alkaline earth hydroborate complexes for the ring-opening polymerisation of cyclic estersDiteepeng, Nichabhat January 2018 (has links)
This Thesis describes the activity and mechanism of alkaline earth organohydroborate, tetrahydroborate and alkoxide catalysts for the ring-opening polymerisation (ROP) of cyclic esters including rac-, L-, D- and meso-lactide (LA), and rac-β-butyrolactone (rac-BBL). <b>Chapter One</b> introduces cyclic esters and general mechanisms for their ROP to give polyesters. Living and immortal ROP, an overview of stereocontrolled ROP, and determination of polylactide (PLA) stereosequences are given. Various techniques for polymer characterisations are also described. <b>Chapter Two</b> describes the activity and mechanism of heavy alkaline earth organohydroborate complexes for the ROP of LA. The synthesis and characterisation of alkaline earth alkoxide complexes serving as model species are also described, together with their activities for the ROP of LA. <b>Chapter Three</b> describes the activity and mechanism of a cyclic organohydroborate calcium complex for the ROP of LA. The role of borinic esters as chain transfer agents in the ROP of rac-LA is also discussed. <b>Chapter Four</b> describes the activity and mechanism of heavy alkaline earth tetrahydroborate complexes for the ROP of LA. The immortal ROP of rac-LA using heavy alkaline earth alkoxide complexes and borate esters as chain transfer agents is discussed. <b>Chapter Five</b> describes the activity and mechanism of alkaline earth organohydroborate, tetrahydroborate and alkoxide complexes for the ROP of rac-BBL. <b>Chapter Six</b> presents experimental procedures and characterising data for new complexes reported.
|
4 |
New main group and rare earth complexes and their applications in the ring-opening polymerisation of cyclic estersCushion, Michael Gregory January 2011 (has links)
This Thesis describes the synthesis and characterisation of new Main Group and Rare Earth alkyl, amide, alkoxide and borohydride complexes and their use as catalysts for the ring-opening polymerisation (ROP) of ε-caprolactone and rac-lactide. <strong>Chapter 1</strong> introduces ROP from an industrial and academic perspective, as well as polymer characterisation techniques. A literature review is given, with an emphasis placed on Main Group catalysts. <strong>Chapter 2</strong> describes the synthesis and characterisation of new homo- and hetero-scorpionate Main Group complexes. An introduction to homo- and hetero-scorpionate ligands is given, as well as a discussion of the ε-caprolactone and rac-lactide ROP activity displayed by the new complexes. <strong>Chapter 3</strong> describes the synthesis and characterisation of new neutral and cationic Main Group borohydride complexes supported by the tris(pyrazolyl)methane and tris(pyrazolyl)hydroborate ligands. A review of borohydride complexes is also given. The ε-caprolactone and rac-lactide ROP activity shown by the complexes presented is also discussed. <strong>Chapter 4</strong> describes the synthesis and characterisation of new mono- and di-cationic yttrium complexes supported by the tris(pyrazolyl)methane and triazacyclononane ligands. An introduction to the synthesis of neutral and cationic Rare Earth complexes is given. An overview of immortal ROP is also provided. The activity of the new complexes towards the immortal ROP of rac-lactide is also discussed. <strong>Chapter 5</strong> contains experimental details and characterising data for the new complexes reported in this thesis. CD Appendix</strong> contains .cif files for all of the new crystallographically characterised complexes.
|
Page generated in 0.0463 seconds