• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interakce mezi hydrogenosomy a endoplasmatickým retikulem u Trichomonas vaginalis / Interaction between hydrogenosomes and endoplasmic reticulum in Trichomonas vaginalis

Kučerová, Jitka January 2019 (has links)
Endoplasmic reticulum-mitochondria encounter structure (ERMES) is a protein complex tethering ER and mitochondria. ERMES consists of four core subunits - Mmm1, Mmm2 (Mdm34), Mdm10 and Mdm12. It was first discovered in Saccharomyces cerevisiae and most functional information is based on studies of this organism. ERMES affects mitochondrial distribution and morphology, participates in lipid trafficking and is important for homeostasis of the cell. In Trichomonas vaginalis, the human urogenital parasite, three genes for putative, highly divergent components of ERMES complex were predicted. However, the cell localization of these proteins and their function is unknown. This thesis is focused on investigation of ERMES components in T. vaginalis, their cellular localization, interactions between components and identification of their possible interacting partners.
2

Translokace proteinů do hydrogenosomů "Trichomonas vaginalis" / Protein translocation into hydrogenosomes of "Trichomonas vaginalis"

Radhakrishna Makki, Abhijith January 2019 (has links)
Mitochondria carry out several important functions in eukaryotic cells such as energy metabolism, iron-sulfur cluster assembly, apoptosis, signaling pathways, protein quality control etc. Most mitochondrial proteins are synthesized on the cytosolic ribosomes and transported to the organelles by the cytosolic chaperones and mitochondrial protein import machinery based on specific targeting signals. Although, the basic principles of protein import have been explained, many questions remain unanswered, particularly for highly modified mitochondria such as hydrogenosomes. The aim of the study was to investigate protein translocation into hydrogenosomes of a human parasite, Trichomonas vaginalis (Tv) with a focus on the composition, function and structure of protein translocases and the role of targeting signals. The translocase of the outer membrane (TOM) is responsible for the import of most proteins into the organelle. Even though, the presence of a TOM complex in trichomonad hydrogenosomes was predicted, its components were not known. Moreover, the generic structure of the mitochondrial TOM complex was not resolved. This study showed that the TvTOM complex is highly divergent consisting of two modified core subunits - channel- forming TvTom40 isoforms and a Tom22-like protein, and two...
3

Proteomická a bioinformatická charakterizace N-terminálních sekvencí proteinů modifikovaných po importu do hydrogenosomu Trichomonas vaginalis. / Proteomická a bioinformatická charakterizace N-terminálních sekvencí proteinů modifikovaných po importu do hydrogenosomu Trichomonas vaginalis.

Zákoucká, Eva January 2014 (has links)
Trichomonas vaginalis is a human pathogen causing trichomoniasis, one of the most common non-viral sexually transmitted diseases in both men and women. Trichomoniasis is currently treated with metronidazole, but the pathogen is known to develop resistance against this drug. However as the pathogen is eukaryotic, the targets for the pathogen elimination without seriously affecting the host are limited. Throughout the evolution Trichomonas vaginalis adapted to anaerobic environments by developing an alternative metabolism resulting in a reduced form of mitochondria named hydrogenosome. Hydrogenosomes lack genetic information, therefore all its proteins are nucleus-encoded and need to be transported inside the hydrogenosome using a targeting N-terminal presequence. The peptidase recognizing and cleaving those presequences at the entrance of the organelle, the hydrogenosomal processing peptidase (HPP), is unique for hydrogenosomes and therefore represents a potential drug target against the pathogen. In this work the HPP's substrate specificity towards the targeting presequences was investigated. To do so a proteomic analysis of the proteome of Trichomonas vaginalis hydrogenosomes was performed using a novel optimized protocol for N-terminal peptide sequencing. N-terminal peptides were captured using a...

Page generated in 0.0691 seconds