Spelling suggestions: "subject:"hymenophyllaceae."" "subject:"zygophyllaceae.""
1 |
Biosystematics of the Phacelia ranunculacea complex (Hydrophyllaceae)Sewell, Matthew. January 2003 (has links)
Thesis (M.S.)--Miami University, Dept. of Botany, 2003. / Title from first page of PDF document. Document formatted into pages; contains v, 53 p. : ill. Includes bibliographical references (p. 24-26).
|
2 |
Zur Embryologie der Hydrophyllaceen, Borraginaceen und Heliotropiaceen, mit besonderer Rücksicht auf die Endospermbildung.Svensson, Harry Gustaf, January 1925 (has links)
Inaug.-diss.--Uppsala / "Sonderabdruck aus Uppsala universitets årsskrift, 1925." "Literaturverzeichnis": p. [168]-175.
|
3 |
Biosystematics of the <i>Phacelia</i> <i>ranunculacea</i> complex (Hydrophyllaceae)Matthew, Sewell 12 December 2003 (has links)
No description available.
|
4 |
The chemistry and biology of insect growth regulators from plants in the genus Nama (Hydrophyllaceae).Binder, Bradley Fletcher. January 1989 (has links)
A strategy for the discovery of new insect growth regulators from arid lands plants was developed. Plant genera with a history of toxicity, medicinal use, or incorporation in native american cultures were selected. Forty-five species from twenty-one families were collected, extracted, and tested for biological activity on the large milkweed bug, Oncopeltus fasciatus. Eight extracts were toxic and the extract of Nama hispidum (Hydrophyllaceae) caused nymphs to undergo precocious metamorphosis to an adult. The active component of N. hispidum was precocene II (6,7-dimethoxy-2,2-dimethyl chromene). Nine Nama species, representing four of the five sections in the genus were gathered from Hawaii, California, Nevada, Arizona, New Mexico, and the Dominican Republic. In addition to the insect anti-hormone, precocene II (PII), present in N. hispidum, N. rothrockii contained at least two different insect juvenile hormone mimics, and N. sandwicense contained insect anti-hormone and insect juvenile hormone mimics. Fifth instar larvae of Heliothis zea were used as model insects to distinguish between post-ingestive intoxication and feeding deterrency during exposure to PII. Larvae fed artificial diet with PII were deterred from eating, and had retarded weight gain, growth, and development. Insects grown on diet with PII consumed less food, could not digest the food, or convert ingested food to body mass. in vivo radiotracer studies with the nutrient, ¹⁴C linoleic acid, show a lower rate of transport and incorporation of radioactivity into fat body tissue. A change in the midgut epithelial cells from PII resulted in reduced transport efficiency and retarded larval growth and development. Scanning electron microscopy of the midgut epithelia indicated that cytotoxic damage is induced by PII. Observed changes in the midgut epithelial cells are consistent with a destructive alkylation of cell structures by PII.
|
Page generated in 0.0554 seconds