• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<b>Multi-phase Nitride-based Metamaterial Thin Films towards Tunable Microstructure and Coupled Multifunctionalities</b>

Jiawei Song (9357755) 16 October 2024 (has links)
<p dir="ltr">Hybrid metamaterials have garnered significant attention in recent years owing to their unique properties not found in natural materials. These materials are engineered by integrating two or more distinct materials at the nanoscale, forming various microstructures such as particle-in-matrix, pillar-in-matrix, and multilayers. The recent development of vertically aligned nanocomposites (VANs) offers a platform in forming pillar-in-matrix metamaterials in a self-assembled fashion. Transition metal nitrides, such as titanium nitride (TiN), are interesting materials for VAN designs due to their outstanding plasmonic properties, chemical stability, and compatibility with various functional materials. However, the current range of material selection and morphological demonstrations in two-phase nitride-based nanocomposites is limited. There is a growing need for a deeper understanding of the self-assembly growth mechanism and greater freedom in structural and property tunability of nitride-based VANs to develop the next generation of integrated photonic and electronic devices.</p><p dir="ltr">This dissertation investigates the design, growth mechanisms, and tunability of nitride-based VANs for advanced metamaterial applications. The first chapter focuses on integrating ferromagnetic CoFe<sub>2</sub> into a plasmonic TiN matrix to achieve anisotropic optical and magnetic properties, as well as coupling effects between the two phases. In the second chapter, a third phase, gold (Au), is introduced into TiN-CoFe<sub>2</sub> VANs in a core-shell configuration, demonstrating enhanced tunability in microstructure and resultant properties, such as distinct hyperbolic behavior and switchable magnetic easy axis. The third chapter extends the exploration into three-dimensional (3D) nanostructured films by combining different VAN films (e.g., TiN-CoFe<sub>2</sub>, TaN-CoFe<sub>2</sub>) in multilayer configurations, demonstrating highly tunable optical properties along with ferromagnetic response. This 3D nanocomposite approach highlights the potential for advanced tunability in metamaterials beyond traditional two-phase VAN designs. The fourth chapter explores the control of stoichiometry and phase composition in TiN-CuO systems. By systematically adjusting oxygen partial pressure during deposition, a gradual transition from metallic to dielectric behavior in these nanocomposite films has been observed. This investigation provides valuable insights into the comprehensive understanding of the interaction processes within hybrid nanocomposites during self-assembly. Overall, this thesis presents diverse methodologies for tuning microstructures and functionalities within nitride-based VAN systems, showing potentials for advanced applications in optics, magnetics, and beyond in metamaterial research.</p>
2

Directional Emission of Light in Hyperbolic Metamaterials and Its Application in Miniature Polarimeter

Chen, Hongwei 26 September 2019 (has links)
No description available.
3

Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticos

Mota, Achiles Fontana da 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (&tau;) and quantum efficiency (&eta;). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce &tau;, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of &eta; . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k&#8804;k0) aiming at increasing &eta;. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and &eta; as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (&eta;eff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize &eta;eff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize &eta;eff for a specified tenfold increase of Peff. This procedure allowed &eta;eff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and &eta; maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (&tau;) e a eficiência quântica (&eta;). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir &tau;, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de &eta;. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k&#8804;k0) visando o aumento de &eta;. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e &eta; em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (&eta;eff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de &eta;eff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar &eta;eff para um aumento de dez vezes de Peff. Este procedimento permitiu que o &eta;eff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e &eta; (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
4

Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticos

Achiles Fontana da Mota 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (&tau;) and quantum efficiency (&eta;). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce &tau;, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of &eta; . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k&#8804;k0) aiming at increasing &eta;. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and &eta; as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (&eta;eff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize &eta;eff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize &eta;eff for a specified tenfold increase of Peff. This procedure allowed &eta;eff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and &eta; maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (&tau;) e a eficiência quântica (&eta;). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir &tau;, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de &eta;. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k&#8804;k0) visando o aumento de &eta;. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e &eta; em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (&eta;eff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de &eta;eff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar &eta;eff para um aumento de dez vezes de Peff. Este procedimento permitiu que o &eta;eff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e &eta; (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
5

Theorical and experimental study of plasmonic metamaterials for infrared application / Etude théorique et expérimentale de métamatériaux plasmiques pour l'application infrarouge

Omeis, Fatima 15 September 2017 (has links)
Le contrôle des ondes électromagnétiques joue un rôle fondamental dans les technologies photoniques actuelles. De nos jours, on assiste à une demande croissante de composants agiles capable d'absorber efficacement les ondes électromagnétiques dans divers gamme de fréquences. Habituellement, ces absorbeurs s'appuient sur les résonances plasmoniques qui apparaissent dans les métaux nobles dans la gamme visible. Cependant, l'extension des propriétés plasmoniques aux spectres infrarouge et THz nécessite des matériaux adéquats ayant un comportement métallique à ces fréquences. Dans ce travail, nous étudions numériquement et expérimentalement les structures métal-isolant-métal (MIM) réalisées à partir de semi-conducteur hautement dopé Si: InAsSb qui a un comportement métallique dans la gamme infrarouge. Dans la deuxième partie, nous avons amélioré l'efficacité des résonateurs MIM en utilisant des métamatériaux hyperboliques qui miniaturisent les résonateurs. Dans la dernière partie, nous proposons un design universel ultra-mince qui permet de dépasser les contraintes associées au choix des matériaux et permettant la réalisation d'un absorbeur fonctionnant sur une gamme spectrale allant de l'infrarouge aux micro-onde. / The control of light absorbance plays a fundamental role in today's photonic technologies. And the urge to design and develop flexible structures that can absorb electromagnetic waves is very growing these days. Usually, these absorbers relies on plasmonic resonances that arise in noble metals in the visible range. However, the extension of the plasmonic properties to the infrared and THz spectra requires adequate materials that have a metallic behavior at these frequencies. In this work, we study numerically and experimentally the metal-insulator-metal (MIM) structures realized from highly doped semiconductor Si:InAsSb that has a metallic behavior in the infrared range. In the second, part we improved the efficiency of the MIM resonators by using hyperbolic metamaterials that also miniaturize the resonators. In the last part, we propose an ultra-thin universal design that overcomes the material barrier so that the total absorption can be achieved for different spectral ranges without changing the material.
6

<b>Effect of Film Thickness on CeO</b><sub><strong>2</strong></sub><b>/Au Vertically Aligned Nanocomposite Morphology and Properties</b>

Matteo T Moceri (18431868) 26 April 2024 (has links)
<p dir="ltr">The primary goal of this work is to gain a fundamental understanding on how growth conditions affect the morphology and crystallography orientation of CeO<sub>2</sub>/Au vertically aligned nanocomposite (VAN) thin films. Focus has been placed on how the changes in morphology and crystallography translate to tunable optical properties. The morphological effects have been observed and analyzed via two main approaches: the change in morphology was observed at multiple points along the film thickness, and the morphology at the film/substrate interface has been analyzed with respect to total film thickness. The changes in Au crystallography orientations have been observed by measuring peak shift in XRD patterns and determining the resulting in- and out-of-plane strain. To observe additional effects of this morphology change, optical measurements have been taken for films at the bottom, middle, and top of the thickness range. Strong trends in transmittance, plasmonic absorption peak shifts and hyperbolic permittivity behavior are correlated with the film thickness. This tunability of optical properties likely arises from changes in both Au pillar phase morphology and crystal orientation. These findings demonstrate that changing film thickness may be a desirable method to easily tune the morphology and optical properties of VAN thin films.</p>
7

Novel fabrication and testing of light confinement devices

Ring, Josh January 2016 (has links)
The goal of this project is to study novel nanoscale excitation volumes, sensitive enoughto study individual chromophores and go on to study new and exciting self assemblyapproaches to this problem. Small excitation volumes may be engineered using light con-finement inside apertures in metal films. These apertures enhance fluorescence emissionrates, quantum yields, decrease fluorescence quenching, enable higher signal-to-noiseratios and allow higher concentration single chromophore fluorescence, to be studied byrestricting this excitation volume. Excitation volumes are reported on using the chro-mophore's fluorescence by utilising fluorescence correlation spectroscopy, which monitorsfluctuations in fluorescence intensity. From the correlation in time, we can find the res-idence time, the number of chromophores, the volume in which they are diffusing andtherefore the fluorescence emission efficiency. Fluorescence properties are a probe ofthe local environment, a particularly powerful tool due to the high brightness (quantumyield) fluorescent dyes and sensitive photo-detection equipment both of which are readilyavailable, (such as avalanche photodiodes and photomultiplier tubes). Novel materialscombining the properties of conducting and non-conducting materials at scales muchsmaller than the incident wavelength are known as meta-materials. These allow combi-nations of properties not usually possible in natural materials at optical frequencies. Theproperties reported so far include; negative refraction, negative phase velocity, fluorescenceemission enhancement, lensing and therefore light confinement has also been proposed tobe possible. Instead of expensive and slow lithography methods many of these materialsmay be fabricated with self assembly techniques, which are truly nanoscopic and otherwiseinaccessible with even the most sophisticated equipment. It was found that nanoscaled volumes from ZMW and HMMs based on NW arrays wereall inefficient at enhancing fluorescence. The primary cause was the reduced fluorescencelifetime reducing the fluorescence efficiency, which runs contrary to some commentatorsin the literature. NW based lensing was found to possible in the blue region of the opticalspectrum in a HMM, without the background fluorescence normally associated with a PAAtemplate. This was achieved using a pseudo-ordered array of relatively large nanowireswith a period just smaller than lambda / 2 which minimised losses. Nanowires in the traditionalregime lambda / 10 produced significant scattering and lead to diffraction, such that they werewholly unsuitable for an optical lensing application.

Page generated in 0.1561 seconds