• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 21
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 80
  • 80
  • 37
  • 37
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Anti-S2 Peptides on a Variety of Muscle Myosin S2 Isoforms and Hypertrophic Cardiomyopathy Mutants Revealed by Fluorescence Resonance Energy Transfer and Gravitational Force Spectroscopy

Aboonasrshiraz, Negar 08 1900 (has links)
Myosin subfragment-2 (S2) is an intrinsically unstable coiled coil. This dissertation tests if the mechanical stability of myosin S2 would influence the availability of myosin S1 heads to actin thin filaments. The elevated instability in myosin S2 coiled coil could be one of the causes for hypercontractility in Familial Hypertrophic Cardiomyopathy (FHC). As hypothesized FHC mutations, namely E924K and E930del, in myosin S2 displayed an unstable myosin S2 coiled coil compared to wild type as measured by Fluorescence Resonant Energy Transfer (FRET) and gravitational force spectroscopy (GFS). To remedy this, anti-S2 peptides; the stabilizer and the destabilizer peptides by namesake were designed in our lab to increase and decrease the stability of myosin S2 coiled coil to influence the actomyosin interaction. Firstly, the effectiveness of anti-S2 peptides were tested on muscle myosin S2 peptides across MYH11 (smooth), MYH7 (cardiac), and MYH2 (skeletal) with GFS and FRET. The results demonstrated that the mechanical stability was increased by the stabilizer and decreased by the destabilizer across the cardiac and skeletal myosin S2 isoform but not for the smooth muscle isoform. The destabilizer peptide had dissociation binding constants of 9.97 × 10-1 μM to MYH7 isoform, 1.00 μM to MYH2 isoform, and no impact on MYH11, and the stabilizer peptide had dissociation binding constants of 2.12 × 10-2 μM to MYH7 isoform, 3.41 × 10-1 μM to MYH2 isoform, and no impact on MYH11 revealed by FRET. In presence of the stabilizer, FRET assay, affinity of the E930del and E924K increased by 10.23 and 0.60 fold respectively. The force required to uncoil muscle myosin S2 peptides in the presence of the stabilizer peptide was more than in its absence in muscle myosin S2 isoforms of MYH7 (1.80 fold higher), MYH2 (1.40 fold higher), and E930del (2.60 fold higher) and no change for MYH11 compared to control. The force required to uncoil muscle myosin S2 in presence of the destabilizer was less than in its absence in both MYH7 (2.00 fold lower) and MYH2 (2.5 fold lower) but the same for MYH11 compared to their controls. Both FRET and GFS assays demonstrated that both anti-S2 peptides do not have any impact on smooth muscle myosin S2 isoform. In FRET assay, there was no significant difference in the lifetime value in the presence or absence of anti-S2 peptides in smooth muscle myosin S2. In GFS assay, there was no significant difference in the force required to uncoil the dimer in presence or absence of the anti-S2 peptides smooth muscle myosin S2. Effectively, the stabilizer peptide improved the stability of FHC mutant (E924K and E930del) myosin S2 peptide. FHC mutations showed high lifetime value in FRET assay and low force to uncoil coiled coil myosin S2 in GFS assay. In the presence of the stabilizer, lifetime value decreased in FRET assay and more force was required to uncoil myosin S2 coiled coil in GFS assay. This study demonstrated that structure of muscle myosin S2 can be altered by small peptides. The stabilizer peptide enhanced dimer formation in wild type and mutant cardiac, and skeletal myosin S2 peptides, and destabilizer increased flexibility of cardiac and skeletal myosin S2 wild type peptide. Neither anti-S2 peptides had impacts on smooth muscle myosin S2 isoform. The study thus effectively demonstrates the mechanical stability of myosin S2 coiled coil in striated muscle system could be modified using the specific anti-S2 peptides. Stabilizer of the anti-S2 peptide was effective to remedy the dampened stability of FHC myosin S2 coiled coil thus providing a new dimension of treating cardiovascular and skeletal muscle disorders by targeting the structural property of muscle proteins.
2

The Relationship of Force on Myosin Subfragment 2 Region to the Coiled-Coiled Region of the Myosin Dimer

Hall, Nakiuda M. 12 1900 (has links)
The stability of myosin subfragment 2 was analyzed using gravitational force spectroscopy. The region was found to destabilize under physiological force loads, indicating the possibility that subfragment 2 may uncoil to facilitate actin binding during muscle contraction. As a control, synthetic cofilaments were produced to discover if the observations in the single molecule assay were due to the lack of the stability provided by the thick filament. Statistically, there was no difference between the single molecule assay data and the synthetic cofilament assay data. Thus, the instability of the region is due to intrinsic properties within subfragment 2.
3

Factors Impacting Attendance of Patients with HCM for Cardiovascular Genetic Counseling

Psensky, Brittany 27 August 2012 (has links)
No description available.
4

Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3

Li, R.H.L., Stern, J.A., Ho, V., Tablin, F., Harris, S.P. 09 1900 (has links)
Background: Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects. ObjectiveTo determine effects of clopidogrel on platelet responsiveness in cats with or without the A31P mutation in the MYBPC3 gene. A secondary aim was to characterize variability in feline platelet responses to clopidogrel. AnimalsFourteen healthy cats from a Maine Coon/outbred mixed Domestic cat colony: 8 cats homozygous for A31P mutation in the MYPBC3 gene and 6 wild-type cats without the A31P mutation. MethodsEx vivo study. All cats received clopidogrel (18.75 mg PO q24h) for 14 days. Before and after clopidogrel treatment, adenosine diphosphate (ADP)-induced P-selectin expression was evaluated. ADP- and thrombin-induced platelet aggregation was measured by optical aggregometry (OA). Platelet pVASP and ADP receptor response index (ARRI) were measured by Western blot analysis. ResultsPlatelet activation from cats with the A31P mutation was significantly (P = .0095) increased [35.55% (18.58-48.55) to 58.90% (24.85-69.90)], in response to ADP. Clopidogrel treatment attenuated ADP-induced P-selectin expression and platelet aggregation. ADP- and PGE(1)-treated platelets had a similar level of pVASP as PGE(1)-treated platelets after clopidogrel treatment. Clopidogrel administration resulted in significantly lower ARRI [24.13% (12.46-35.50) to 11.30% (-7.383 to 23.27)] (P = .017). Two of 13 cats were nonresponders based on OA and flow cytometry. Conclusion and Clinical ImportanceClopidogrel is effective at attenuating platelet activation and aggregation in some cats. Cats with A31P mutation had increased platelet activation relative to the variable response seen in wild-type cats.
5

Identification of novel sarcomeric modifiers of hypertrophy in hypertrophic cardiomyopathy using the yeast two-hybrid system

Todd, Carol 03 1900 (has links)
Thesis (MScMedSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) occurs when the cardiomyocytes in the left ventricle become enlarged by increasing in mass in response to haemodynamic pressure overload. This can either be attributed to a normal physiological response to exercise or can be the result of a maladaptive process or disease state, such as chronic hypertension. Hypertrophic cardiomyopathy (HCM) is the most common form of Mendelian-inherited cardiac disease. A defining characteristic thereof is primary LVH that occurs when there are no other hypertrophy-predisposing conditions present. Therefore, HCM provides a unique opportunity to study the molecular determinants of LVH in the context of a Mendelian disorder, instead of in more complex disorders such as hypertension. Over 1000 HCM-causing mutations in 19 genes have been identified thus far, most of them encoding sarcomeric proteins residing in the sarcomeric C-zone. However, for many HCM patients no disease-causing genes have been identified. Moreover, studies have shown phenotypic variation in presentation of disease in, as well as between, families in which the same HCM-causing mutation segregates. This has led many investigators to conclude that genetic modifiers of hypertrophy exist. The aim of the study was to identify novel plausible HCM-causing or modifier genes by searching for interactors of a known HCM-causing protein, namely titin. The hypothesis was that genes encoding proteins, which interact with proteins that are encoded by known HCM-causative genes, may also be considered HCM-causing or may modify the HCM phenotype. To this end, the aim was to identify novel interactors of the 11-domain super-repeat region of titin, which resides within the sarcomeric C-zone, using yeast two-hybrid analysis. Five putative interactors of the 11-domain super-repeat region of titin were identified in this study. These interactions were subsequently verified by colocalisation in H9C2 rat cardiomyocytes, providing further evidence for possible interactions between titin and these proteins. The putative interactor proteins of titin determined from the Y2H library screen were: filamin C (FLNC), phosphatidylethanolamine-binding protein 4 (PEBP4), heart-type fatty acid binding protein 3 (H-FABP3), myomesin 2 (MYOM2) and myomesin 1 (MYOM1). The FLNC gene could be a candidate for cardiac diseases, especially cardiomyopathies that are associated with hypertrophy or developmental defects. The putative interaction of titin and PEBP4 is speculated to be indicative of the formation of the interstitial fibrosis and myocyte disarray seen in HCM. Heart-type fatty acid-binding protein 3 has prognostic value to predict recurrent cardiac events. Its suggested interaction with titin is speculated to play a role in inhibiting its functional abilities. Myomesin 2 is jointly responsible, with MYOM1, for the formation of a head structure on one end of the titin string that connects the Z and M bands of the sarcomere. This is speculated to be linked to a developmental error with the result being a defect in sarcomeric structure formation, which could result in pathologies such as HCM. Therefore, these identified proteins could likely play a functional role in HCM due to their interactions with titin. This research could thus help with new insights into the further understanding of HCM patho-aetiology. / AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) ontstaan wanneer die kardiomyosiete in die linkerventrikel vergroot as gevolg van 'n verhoging in massa in reaksie op hemodinamiese drukoorlading. Dit kan toegeskryf word aan 'n normale fisiologiese respons op oefening of kan die gevolg wees van 'n wanaangepaste of siektetoestand, soos chroniese hipertensie. Hipertrofiese kardiomiopatie (HKM) is die mees algemene vorm van Mendeliese oorerflike hartsiekte. 'n Bepalende eienskap daarvan is primêre LVH, wat plaasvind wanneer daar geen ander hipertrofie-predisponerende voorwaardes teenwoordig is nie. Gevolglik bied HKM 'n unieke geleentheid om die molekulêre derterminante van LVH te bestudeer, in die konteks van 'n Mendeliese oorerflike siekte, in plaas van om dit in die meer komplekse siektes soos hoë bloeddruk te bestudeer. Meer as 1000 HKM-veroorsakende mutasies is tot dusver in 19 gene geïdentifiseer. Die meeste van hulle kodeer vir sarkomeriese proteïene wat in die C-sone voorkom. Egter, vir baie HKM-pasiënte is geen siekte-veroorsakende gene al geïdentifiseer nie. Daarbenewens het studies getoon dat variasie in fenotipiese aanbieding van die siekte in, sowel as tussen, families voorkom wat dieselfde HKM-veroorsakende mutasie het. Dit het daartoe gelei dat baie navorsers tot die gevolgtrekking gekom het dat genetiese wysigers van hipertrofie wel bestaan. Die doel van die studie was om nuwe moontlike HKM-veroorsakende of wysiger-gene te identifiseer deur te soek vir interaktors van 'n bekende HKM-veroorsakende proteïen, naamlik titin. Die hipotese was dat gene wat vir proteïene kodeer, wat in wisselwerking is met proteïene wat geïnkripteer word deur bekende HKM-veroorsakende gene, ook oorweeg kan word om HKM te veroorsaak. Dit kan ook die HKM fenotipe verander. Dus was die doel om nuwe interaktors van die 11-domein super-herhaalstreek van titin, soos gevind binne die sarkomeriese C-sone, te identifiseer deur middel van gis-twee-hibried-analise. Vyf vermeende interaktors van die 11-domein super-herhaalstreek van titin is in hierdie studie geïdentifiseer. Hierdie interaksies is later geverifieer met behulp van ko-lokalisering in H9C2-rotkardiomyosiete, wat verdere bewyse vir moontlike interaksies tussen titin en hierdie proteïene verskaf. Die vermeende interaktor-proteïene van titin wat bepaal is vanaf die gis-twee-hibried-biblioteeksifting was as volg: filamin C (FLNC), phosphatidylethanolamine-bindingsproteïen 4 (PEBP4), hart-tipe-vetsuur bindingsproteïen 3 (H-FABP3), myomesin 2 (MYOM2) en myomesin 1 (MYOM1). Die FLNC-geen kan 'n kandidaat vir kardiale siektes, veral kardiomiopatieë, wees wat geassosieer word met hipertrofie of ontwikkelingsafwykings. Die vermeende interaksie van titin en PEBP4 dui daarop om 'n aanduiding te wees vir die vorming van die interstisiële fibrose en miokardiale wanorde, soos gesien in HKM. Hart-tipe-vetsuur bindingsproteïen 3 het prognostiese waarde om herhalende kardiale gebeure te voorspel. Verder dui sy voorgestelde interaksie met titin moontlik daarop dat dit 'n rol kan speel in die inhibering van sy funksionele vermoëns. Myomesin 2 tesame met MYOM1 is verantwoordelik vir die vorming van 'n kopstruktuur aan die een kant van die titinstring wat dan die Z- en M-bande van die sarkomeer verbind. Daar word vermoed dat dit gekoppel is aan 'n ontwikkelingsfout, met die gevolg dat daar 'n defek is in sarkomeriese struktuurvorming, wat weer kan lei tot patologieë soos HKM. / Mrs Wendy Ackerman / Prof Paul van Helden / National Research Foundation (NRF) / Stellenbosch University
6

JPH2 Mutant Gene Causes Familial Hypertrophic Cardiomyopathy : A Possible Model to Unravel the Subtlety of Calcium-Regulated Contractility

Roberts, Robert 02 1900 (has links)
No description available.
7

Hypertrophic cardiomyopathy in Northern Sweden : with special emphasis on molecular genetics

Mörner, Stellan January 2004 (has links)
Hypertrophic cardiomyopathy (HCM) is a heterogeneous, often familial disease, characterized by cardiac hypertrophy, predominantly affecting the interventricular septum. To date, no study has systematically analysed the genetic and phenotypic aspects of the disease in a Swedish population. The aim of this thesis was to identify the genotypes causing HCM in northern Sweden, to characterize the disease phenotypes and correlate these findings. Forty-six patients were recruited for the genetic studies (21 women), 11 familial and 35 sporadic cases. Eight sarcomeric protein genes were screened for mutations. A total of 11 different disease causing mutations were found in four genes. Six of the mutations were previously not described. A novel mutation (a 33 base pair deletion) in the troponin I gene was found in one HCM family. Despite the severe genetic defect, the associated phenotype displayed only mild cardiac hypertrophy and few symptoms. Most mutations (64%) were identified in the myosin binding protein C gene, a gene considered to have a low penetrance. Mutations were identified in 10 of 11 familial HCM cases, but only in three of the 35 sporadic cases. It was found that cardiac amyloidosis can sometimes present itself as HCM. Three HCM patients (7%) carried the ATTR Val30Met mutation, also found in Swedish patients with familial amyloid polyneuropathy (FAP). The patients had no symptoms of polyneuropathy, but cardiac amyloidosis as the cause of hypertrophy was verified by myocardial biopsy in an index case. Amyloid heart disease should therefore be considered as a differential diagnosis in patients with HCM. By studying heart rate variability (HRV), it was found that young patients with HCM had signs of autonomic dysfunction, expressed as a reduced HRV. Treatment with beta-blockade attenuated these effects. Abnormal autonomic function might be a substrate for lethal arrhythmias, most often encountered in younger patients with HCM. The results suggest a possible protective effect of beta-blockade, remaining to be studied further. Ventricular function is frequently abnormal in HCM. In particular, diastolic dysfunction has been demonstrated. The recently described myocardial performance index allows the assessment of cardiac function by combining systolic and diastolic performance. We found that patients with hypertrophic cardiomyopathy had evidence of global and regional right ventricular dysfunction, besides left ventricular dysfunction. Hypertrophic cardiomyopathy is traditionally considered to be a disease of the left ventricle. The results show that hypertrophic cardiomyopathy should more be regarded as a biventricular disease. In conclusion, the myosin binding protein C gene is the most common gene causing familial HCM in northern Sweden. This disease gene is considered to be associated with a mild, late-onset disease with ≈50% penetrance at 30 years of age. The low disease penetrance emphasizes the importance of adequate family screening when evaluating patients with HCM, since the familial nature of the disease might easily be overlooked. These particular disease features in northern Sweden contrast to most previous reports, which indicate another disease gene as the most frequent in HCM, associated with a much higher penetrance. Amyloid heart disease, requiring different treatment than HCM, should be kept in mind as a differential diagnosis in the management of patients with HCM. Key words: Hypertrophic cardiomyopathy, genetics, autonomic nervous system, familial amyloid polyneuropathy, echocardiography.
8

The Impact of Biological Sex on Crossbridge Cycling Kinetics in Mice Expressing the R403Q Mutation

Birch, Camille L. January 2015 (has links)
Congestive heart failure represents one of the leading causes of death in industrialized countries. A subset of heart failure situations are linked to genetic mutations, many of which reside in sarcomeric proteins. With the prevalence of mutations as approximately 1:500, the location of a mutation plays a direct role in the severity and lethality of the resulting disease state. The point mutation Arg403Glu (R403Q) located on the myosin heavy chain molecule is no exception with a resulting development of left ventricular hypertrophy, myocyte disarray, and increased cellular fibrosis. Given the severity of this mutation in humans, a mouse model was developed to recapitulate these phenotypic characteristics. An additional confounding factor often overlooked when studying the effects of cardiac disease is the role of biological sex. We, therefore, tested the hypothesis that R403Q mice will display altered crossbridge kinetics, specifically an increase in functioning at the expense of energy efficiency, and that biological sex will impact the cardiac response to the R403Q mutation in terms of both crossbridge functioning and post-translational modifications. To do this, we used both male and female R403Q transgenic mice and quantified myofilament mechanical properties including Ca²⁺ sensitivity, crossbridge cycling kinetics, and tension cost of contraction. In addition, phosphorylation patterning was quantified for one of the central, sarcomeric regulatory proteins, cardiac troponin I. We used 2 month animals which do not display overt pathology in the form of hypertrophy in order to minimize downstream, confounding effects. We were able to find that disease and biological sex played an important role in defining these parameters and suggests females are able to better compensate to the presence of altered sarcomeric interactions. Future investigations should focus on altered kinase activity, possibly driven by interactions with estrogen, in order to better define how females can retain cardiac functioning given a disease condition.
9

Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models

Ferrantini, Cecilia, Coppini, Raffaele, Pioner, Josè Manuel, Gentile, Francesca, Tosi, Benedetta, Mazzoni, Luca, Scellini, Beatrice, Piroddi, Nicoletta, Laurino, Annunziatina, Santini, Lorenzo, Spinelli, Valentina, Sacconi, Leonardo, De Tombe, Pieter, Moore, Rachel, Tardiff, Jil, Mugelli, Alessandro, Olivotto, Iacopo, Cerbai, Elisabetta, Tesi, Chiara, Poggesi, Corrado 22 July 2017 (has links)
Background-In cardiomyocytes from patients with hypertrophic cardiomyopathy, mechanical dysfunction and arrhythmogenicity are caused by mutation-driven changes in myofilament function combined with excitation-contraction (E-C) coupling abnormalities related to adverse remodeling. Whether myofilament or E-C coupling alterations are more relevant in disease development is unknown. Here, we aim to investigate whether the relative roles of myofilament dysfunction and E-C coupling remodeling in determining the hypertrophic cardiomyopathy phenotype are mutation specific. Methods and Results-Two hypertrophic cardiomyopathy mouse models carrying the R92Q and the E163R TNNT2 mutations were investigated. Echocardiography showed left ventricular hypertrophy, enhanced contractility, and diastolic dysfunction in both models; however, these phenotypes were more pronounced in the R92Q mice. Both E163R and R92Q trabeculae showed prolonged twitch relaxation and increased occurrence of premature beats. In E163R ventricular myofibrils or skinned trabeculae, relaxation following Ca2+ removal was prolonged; resting tension and resting ATPase were higher; and isometric ATPase at maximal Ca2+ activation, the energy cost of tension generation, and myofilament Ca2+ sensitivity were increased compared with that in wildtype mice. No sarcomeric changes were observed in R92Q versus wild-type mice, except for a large increase in myofilament Ca2+ sensitivity. In R92Q myocardium, we found a blunted response to inotropic interventions, slower decay of Ca2+ transients, reduced SERCA function, and increased Ca2+/calmodulin kinase II activity. Contrarily, secondary alterations of E-C coupling and signaling were minimal in E163R myocardium. Conclusions-In E163R models, mutation-driven myofilament abnormalities directly cause myocardial dysfunction. In R92Q, diastolic dysfunction and arrhythmogenicity are mediated by profound cardiomyocytesignaling and E-C coupling changes. Similar hypertrophic cardiomyopathy phenotypes can be generated through different pathways, implying different strategies for a precision medicine approach to treatment.
10

Myocardial Fibrosis in Patients With Symptomatic Obstructive Hypertrophic Cardiomyopathy: Correlation With Echocardiographic Measurements, Sarcomeric Genotypes, and Pro-Left Ventricular Hypertrophy Polymorphisms Involving the Renin-Angiotensin-Aldosterone System

Blauwet, Lori A., Ackerman, Michael J., Edwards, William D., Riehle, Darren L., Ommen, Steve R. 01 September 2009 (has links)
Introduction: Hypertrophic cardiomyopathy (HCM) is a heterogeneous disorder of the cardiac sarcomere, resulting in myocyte hypertrophy and disarray, interstitial fibrosis, and cardiac dysfunction. Our aim was to determine whether the amount of fibrosis in HCM correlates with echocardiographic measures of diastolic dysfunction, presence of HCM-susceptibility mutations, or polymorphisms in the renin-angiotensin-aldosterone system (RAAS). Methods: Surgical specimens from patients with obstructive HCM undergoing septal myectomy at the Mayo Clinic (2001-2004) were examined and compared with autopsy-derived tissues from age- and sex-matched normal controls. Digital image analysis was used to quantitate the fibrosis in representative microscopic sections. Genotyping was performed for myofilament-HCM using polymerase chain reaction, high-performance liquid chromatography, and direct DNA sequencing. RAAS polymorphism status was similarly established. Results: The study included 59 HCM cases and 44 controls. Patients with HCM exhibited more fibrosis (mean 17%, range 3-45%) than controls (mean 8%, range 3-17%) (P<.0001). A significant relationship existed between amount of fibrosis and maximum wall thickness (P=.02), left ventricular ejection fraction (P=.02), and peak early/late diastolic mitral annulus velocity (E/A ratio) (P=.002). Although there was no association between amount of fibrosis and myofilament-HCM genotype status or polymorphisms in the RAAS cascade, there was a trend toward more fibrosis in patients with ≥1 C-encoding allele in CYP11B2-encoded aldosterone synthase. Conclusions: Patients with HCM undergoing septal myectomy had significantly more myocardial interstitial fibrosis than controls. The amount of fibrosis in HCM patients correlated with degree of septal hypertrophy and left ventricular systolic and diastolic function. Notably, neither mutations in cardiac myofilament proteins or polymorphisms in RAAS exhibited strong associations with severity of myocardial fibrosis.

Page generated in 0.132 seconds