Spelling suggestions: "subject:"acetogenesis."" "subject:"frontogenesis.""
1 |
Dynamics underlying epileptic seizures: insights from a neural mass modelFan, Xiaoya 17 December 2018 (has links) (PDF)
In this work, we propose an approach that allows to explore the potential pathophysiological mechanisms (at neuronal population level) of ictogenesis by combining clinical intracranial electroencephalographic (iEEG) recordings with a neural mass model. IEEG recordings from temporal lobe epilepsy (TLE) patients around seizure onset were investigated. Physiologically meaningful parameters (average synaptic gains of the excitatory, slow and fast inhibitory population, Ae, B and G) were identified during interictal to ictal transition. We analyzed the temporal evolution of four ratios, i.e. Ae/G, Ae/B, Ae/(B + G), and B/G. The excitation/inhibition ratio increased around seizure onset and decreased before seizure offset, suggesting the disturbance and restoration of balance between excitation and inhibition around seizure onset and before seizure offset, respectively. Moreover, the slow inhibition may have an earlier effect on the breakdown of excitation/inhibition balance. Results confirm the decrease in excitation/inhibition ratio upon seizure termination in human temporal lobe epilepsy, as revealed by optogenetic approaches both in vivo in animal models and in vitro. We further explored the distribution of the average synaptic gains in parameter space and their temporal evolution, i.e. the path through the model parameter space, in TLE patients. Results showed that the synaptic gain values located roughly on a plane before seizure onset, dispersed during ictal and returned when the seizure terminated. Cluster analysis was performed on seizure paths and demonstrated consistency in synaptic gain evolution across different seizures from individual patients. Furthermore, two patient groups were identified, each one corresponding to a specific synaptic gain evolution in the parameter space during a seizure. Results were validated by a bootstrapping approach based on comparison with random paths. The differences in the path revealed variations in EEG dynamics for patients despite showing an identical seizure onset pattern. Our approach may have the potential to classify the epileptic patients into subgroups based on different mechanisms revealed by subtle changes in synaptic gains and further enable more robust decisions regarding treatment strategy. The increase of excitation/inhibition ratios, i.e. Ae/G, Ae/B and Ae/(B+G), around seizure onset makes them potential cues for seizure detection. We explored the feasibility of a model based seizure detection algorithm. A simple thresholding method was employed. We evaluated the algorithm against the manual scoring of a human expert on iEEG samples from patients suffering from different types of epilepsy. Results suggest that Ae/(B+G), i.e. excitation/(slow + fast inhibition) ratio, allowed the best performance and that the algorithm best suited TLE patients. Leave-one-out cross-validation showed that the algorithm achieved 94.74% sensitivity for TLE patients. The median false positive rate was 0.16 per hour, and median detection delay was -1.0 s. Of interest, the values of the threshold determined by leave-one-out cross-validation for TLE patients were quite constant, suggesting a general excitation/inhibition balance baseline in background iEEG among TLE patients. Such a model-based seizure detection approach is of clinical interest and could also achieve good performance for other types of epilepsy provided that more appropriate model, i.e. better describe epileptic EEG waveforms for other types of epilepsy, is implemented. Altogether, this thesis contributes to the field of epilepsy research from two perspectives. Scientifically, it gives new insights into the mechanisms underlying interictal to ictal transition, and facilitates better understanding of epileptic seizures. Clinically, it provides a tool for reviewing EEG data in a more efficient and objective manner and offers an opportunity for on-demand therapeutic devices. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
2 |
Dysplasies corticales focales de l'enfant : localisation par l'imagerie de perfusion in vivo et caractérisation électrophysiologique des activités épileptiques in vitro / Focal cortical dysplasia in children : in vivo localization with perfusion imaging, and in vitro characterization of epileptic activitiesBlauwblomme, Thomas 04 April 2017 (has links)
Les dysplasies corticales (FCD) sont une cause fréquente d’épilepsie lésionnelle requérant un traitement chirurgical, caractérisées par l’association de troubles de l’architecture corticale et la présence de cellules neuronales et/ou gliales anormales Les FCD restent parfois difficiles à identifier / localiser et la physiopathologie des activités épileptiques qu’elles produisent reste mal connue. L’objectif de ce travail est d’optimiser la localisation anatomique et fonctionnelle des FCD chez l’enfant et d’étudier leur épileptogénicité par une double approche, in vivo en imagerie de perfusion IRM-ASL (Arterial Spin Labeling), et in vitro par enregistrements de tissus humains post-opératoires sur matrice de micro électrodes. L’intérêt de l’étude de ces dysplasies chez l’enfant est majeure à un âge où la récurrence des crises n’a pas encore modifié le réseau … Tout d’abord, nous avons montré une hypoperfusion focale des dysplasies corticales focales de type II colocalisée à l’hypo métabolisme en 18FDG-PET scan et au défect histologique. Nous avons développé une méthode d’analyse statistique du signal ASL permettant l’intégration des données objectives de l’imagerie dans une approche multimodale des anomalies interictales associant ASL et IRM fonctionnelle-EEG. Ensuite, nous avons exploré in vitro des tranches de cortex humain dysplasique post-opératoire. La présence d’activités épileptiques interictales spontanées témoignait de la persistance des caractéristiques épileptogéniques des FCD, variables selon les sous types histologiques. L’étude de la signalisation GABAergique et de la régulation du chlore a montré que le co transporteur du chlore NKCC1 chargeait excessivement les neurones en chlore alors que son concurrent KCC2, extrudant normalement ces anions, était down-régulé. La dérégulation neuronale du chlore qui en résulte est à l’origine d’effets paradoxalement dépolarisants du GABA, rendant compte non pas d’une perte d’inhibition GABAergique mais de son implication active dans les processus épileptiques. Enfin, nous avons contribué à mettre en évidence le rôle des hémicanaux Pannexines1, et de la transmission purinergique dans l’initiation et la maintenance des activités ictales, ouvrant une nouvelle piste thérapeutique chez les patients présentant ces épilepsies pharmaco résistantes. / Focal cortical Dysplasias (FCD) are a frequent etiology of lesional epilepsy, requiring surgical treatment. They are defined by abnormalities of cortical architecture intermixed with the presence of abnormal neuronal or glial cells. Imaging FCD remains challenging, both to detect and map the lesion, and the pathophysiology of the epileptic discharges they produce is incompletely understood. The aim of this PhD is to improve in vivo FCD mapping in children with perfusion MRI, and to study in vitro their epileptogenicity with human postoperative cortical slices electrophysiological recordings on micro electrode arrays. First, we showed with ASL MRI (Arterial Spin Labeling) a focal hypoperfusion in type II FCD, colocalized with 18FDG-PET hypo metabolism and histological defects. We developed a statistical analysis of ASL under SPM integrated in a multimodal approach of FCD with EEG-fMRI and ASL-MRI. Second, we studied in vitro slices of human postoperative dysplastic cortex. We could record reliable spontaneous inter ictal discharges, specific of the histological subtype, showing that tissues retain epileptogenic features. We focused our study on GABAergic signaling and neuronal chloride regulation. We have identified an excessive chloride load in neurons by the co transporter NKCC1 whereas chloride extrusion was deficient because of KCC2 down regulation. The consequent chloride dysregulation resulted in paradoxical GABAergic depolarization, responsible for a loss of inhibitory processes but also a shift to excitatory effects of GABAergic signals. Third, we also contributed to a study on Pannexin hemichannels, revealing that Pannexin1 channels sustain initiation and maintenance of ictal activity though purinergic neurotransmission in human cortical slices, supporting new anti epileptic targets in human pharmaco resistant epilepsies.
|
Page generated in 0.0595 seconds