41 |
Ideais algebricos de aplicações multilineares e polinômios homogêneos / Algebraic ideals of multilinear mappings and homogeneous polynomialsMoura, Fernanda Ribeiro de 28 May 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The main purpose of this dissertation is the study of ideals of multilinear mappings and
homogeneous polynomials between linear spaces. By an ideal we mean a class that is
stable under the composition with linear operators. First we study multilinear mappings
and spaces of multilinear mappings. We also show how to obtain, from a given multilinear
mapping, other multilinear mappings with degrees of multilinearity greater than, equal
to or smaller than the degree of the original multilinear mapping. Next we study homogeneous
polynomials and spaces of homogeneous polynomials, and we also show how
to obtain, from a given n-homogeneous polynomial, other polynomials with degrees of
homogeneity greater than, equal to or smaller than the degree of the original polynomial.
Next we study ideals of multilinear mappings, or multi-ideals, and ideals of homogeneous
polynomial, or polynomial ideals, giving several examples and presenting methods to generated
multi-ideals and polynomial ideals from a given operator ideal. Finally we dene
and give several examples of coherent multi-ideals and coherent polynomial ideals. / O principal objetivo desta dissertação e estudar os ideais de aplicações multilineares e polinômios homogêneos entre espaços vetoriais. Por um ideal entendemos uma classe de aplicações que e estavel atraves da composição com operadores lineares. Primeiramente estudamos as aplicações multilineares e os espaços de aplicações multilineares. Mostramos tambem como obter, a partir de uma aplicação multilinear dada, outras aplicações com graus de multilinearidade maiores, iguais ou menores que o da aplicação original. Em seguida estudamos os polinômios homogêneos e os espacos de polinômios homogêneos,
e mostramos que, a partir de um polinômio n-homogêneo, tambem podemos construir novos polinômios homogêneos com graus de homogeneidade maiores, iguais ou menores que n. Posteriormente estudamos os ideais de aplicações multilineares, ou multi-ideais,
e os ideais de polinômios homogêneos, exibindo varios exemplos e apresentando metodos para se obter um multi-ideais, ou ideais de polinômios, a partir de ideais de operadores lineares dados. Por m, denimos e exibimos varios exemplos de multi-ideais coerentes e
de ideais coerentes de polinômios. / Mestre em Matemática
|
42 |
Sobre fechos de módulos sobre anéis semiprimos e não-singularesNery, Janice January 2002 (has links)
Se R é um anel não-singular `a direita e Q é o seu anel maximal de quocientes à direita, existe um teorema que estabelece condições equivalentes para que a envoltória injetiva de um ideal `a direita de R seja um Q-bimódulo ([8]). Este teorema ´e provado usando a ortogonalidade de uma família de ideais. Nesta tese estendemos a ortogonalidade de uma família de ideais para uma família de módulos sobre anéis semiprimos e não-singulares `a direita. Com esta noção estendemos o resultado de [8] acima mencionado, para bimódulos centralizantes sobre anéis semiprimos e não-singulares `a direita. / In case R is a right nonsingular ring and Q is its right maximal quotients ring, there is a theorem that gives equivalent conditions for the injective hull of a right ideal of R to be a Q-bimodule ([8]). This theorem is proved using the orthogonality of a family of ideals. In this thesis we extended the orthogonality of a family of ideals to a family of modules over semiprime and right nonsingular rings. With this notion we extend the result of [8] to centralizing bimodules over semiprime and right nonsingular rings.
|
43 |
Extensões de Ore : ideais maximas e outras questõesCortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, σ an automorphism of R and d a σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
|
44 |
Relação entre o número máximo de elementos independentes em um anel local e a coaltura de ideais primos associados ao seu completamentoDoering, Luisa Rodriguez January 1990 (has links)
Neste trabalho estudamos resultados sobre elementos independentes em relação a um ideal de um anel noetheriano comutativo com unidade. Começamos mostrando, num resultado devido a G. VALLA, que o supremo de um ideal (número máximo de elementos independentes nesse ideal) está entre a profundidade e a altura do mesmo. Demonstramos então um teorema, devido a N.V. TRUNG, que relaciona o supremo de um ideal com o comportamento do ideal nulo de completamentos de localizações do anel em primos associados a este ideal. Como aplicação desse resultado provamos que o completamento de um anel local (R, m) possui um ideal primo associado (mÍnimo) ao ideal nulo de coaltura r se e somente se em R existir um ideal m-primário (inteiramente fechado) cujo supremo é r. / We prove results concerning independent elements with respect to an ideal of a commutative Noetherian ring with unity. First we prove a. result dueto G. VALLA: the supremum of a.n ideal, tha.t is, the maximum number of independent elements of an ideal with respect to itself, is bounded below by the depth and above by the height of the ideal. Next we prove a cha.ra.cterization theorem of N.V. TRUNG which relates the supremum of an ideal with the behavior of the zero ideal of completions of localiza.tions of the ring at its associated prime ideais. As an applica.tion, we prove that the completion of a local ring (R, m) has a (minimal) prime divisor of coheight r if and only if there exists in R a.n (integrally closed) m-primary ideal with supremum r.
|
45 |
Relação entre o número máximo de elementos independentes em um anel local e a coaltura de ideais primos associados ao seu completamentoDoering, Luisa Rodriguez January 1990 (has links)
Neste trabalho estudamos resultados sobre elementos independentes em relação a um ideal de um anel noetheriano comutativo com unidade. Começamos mostrando, num resultado devido a G. VALLA, que o supremo de um ideal (número máximo de elementos independentes nesse ideal) está entre a profundidade e a altura do mesmo. Demonstramos então um teorema, devido a N.V. TRUNG, que relaciona o supremo de um ideal com o comportamento do ideal nulo de completamentos de localizações do anel em primos associados a este ideal. Como aplicação desse resultado provamos que o completamento de um anel local (R, m) possui um ideal primo associado (mÍnimo) ao ideal nulo de coaltura r se e somente se em R existir um ideal m-primário (inteiramente fechado) cujo supremo é r. / We prove results concerning independent elements with respect to an ideal of a commutative Noetherian ring with unity. First we prove a. result dueto G. VALLA: the supremum of a.n ideal, tha.t is, the maximum number of independent elements of an ideal with respect to itself, is bounded below by the depth and above by the height of the ideal. Next we prove a cha.ra.cterization theorem of N.V. TRUNG which relates the supremum of an ideal with the behavior of the zero ideal of completions of localiza.tions of the ring at its associated prime ideais. As an applica.tion, we prove that the completion of a local ring (R, m) has a (minimal) prime divisor of coheight r if and only if there exists in R a.n (integrally closed) m-primary ideal with supremum r.
|
46 |
Ideais primos, maximais e primitivos em certos subanéis de anéis de polinômiosMiranda, Edilson Soares January 2008 (has links)
Nesta tese caracterizamos completamente ideais primos, primitivos e maximais em certos subanéis graduados de anéis de polinômios, que chamamos de subanéis admissíveis. Obtivemos uma correspondência biunívoca, via contração entre certas subfamílias de ideais primos, primitivos e maximais de R[x] e certas subfamílias de ideais primos, primitivos e maximais de subanéis admissíveis, respectivamente. Também caracterizamos ideais primos e maximais em subanéis admisséveis com várias variáveis. Ainda, estendemos alguns resultados sobre anéis de Jacobson para anéis admissíveis e generalizamos alguns resultados obtidos em subanéis admissíveis para certos subanéis de skew anéis de polinômios. / In this thesis we completely characterize prime, primitive and maximal ideals in certain graded subrings of polynomial rings, that we call of admissible subrings. We obtain via contraction a one-to-one correspondence between certain subfamily of prime, primitive and maximal ideals of R[x] and certain subfamily of prime, primitive and maximal ideals of admissible subrings, respectively. We also characterize prime and maximal ideals in admissible subrings with several variables. We also extend some results about Jacobson rings for admissible rings and we generalize some results obtained in admissible subrings for certain subrings of skew polynomial rings.
|
47 |
Extensões de Ore : ideais maximas e outras questõesCortes, Wagner de Oliveira January 2003 (has links)
Sejam R um anel, σ um automorfismo e d umaσ derivação de R. A presente tese discorre sobre diferentes tipos de problemas em skew anel de polinômios. Obtivemos condições necessárias e suficientes para a existência de ideais maximais e demos uma caracterização completa do radical de Brown McCoy em R[x; σ.]. Para o caso R[x; d] fizemos o mesmo estudo e obtemos resultados completos para o caso em que R é um anel comutativo, ou R é uma Q-álgebra. Estudamos condições necessárias e condições suficientes para que um ideal seja principal em R[x; σ ; d]. Finalmente, demos uma completa caracterização do centróide estendido de imagens holomórficas de skew anel de polinômios. / Let R be a ring, σ an automorphism of R and d a σ derivation of R. In this thesis, we studied different questions in skew polynomial rings. We obtained necessarily and sufficient conditions for the existence of maximal ideals and a complete characterization of Brown McCoy radical of R[x; σ] and R[x; d]. We studied necessarily and sufficient conditions for an ideal is principal in R[x; σ ; d]. Finishing this thesis, we gave a complete characterization of extended centroid of homomorphic images in skew polynomial rings of automorphism and derivation type.
|
48 |
Sobre fechos de módulos sobre anéis semiprimos e não-singularesNery, Janice January 2002 (has links)
Se R é um anel não-singular `a direita e Q é o seu anel maximal de quocientes à direita, existe um teorema que estabelece condições equivalentes para que a envoltória injetiva de um ideal `a direita de R seja um Q-bimódulo ([8]). Este teorema ´e provado usando a ortogonalidade de uma família de ideais. Nesta tese estendemos a ortogonalidade de uma família de ideais para uma família de módulos sobre anéis semiprimos e não-singulares `a direita. Com esta noção estendemos o resultado de [8] acima mencionado, para bimódulos centralizantes sobre anéis semiprimos e não-singulares `a direita. / In case R is a right nonsingular ring and Q is its right maximal quotients ring, there is a theorem that gives equivalent conditions for the injective hull of a right ideal of R to be a Q-bimodule ([8]). This theorem is proved using the orthogonality of a family of ideals. In this thesis we extended the orthogonality of a family of ideals to a family of modules over semiprime and right nonsingular rings. With this notion we extend the result of [8] to centralizing bimodules over semiprime and right nonsingular rings.
|
49 |
Pot^encias simb olicas de ideais perfeitos de codimens~ao 2 com apresenta c~ao linearRamos, Zaqueu Alves 31 January 2012 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-06T18:53:35Z
No. of bitstreams: 2
Tese_Zaqueu_Biblioteca.pdf: 772846 bytes, checksum: a11fb05e14d751f21a3f45c1aa5cae4a (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-06T18:53:35Z (GMT). No. of bitstreams: 2
Tese_Zaqueu_Biblioteca.pdf: 772846 bytes, checksum: a11fb05e14d751f21a3f45c1aa5cae4a (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2012 / O tema desse trabalho s~ao as pot^encias simb olicas de ideais perfeitos de codimens~
ao 2 com apresenta c~ao linear. Estudamos mais profundamente os casos onde os
elementos s~ao formas lineares gerais e onde a matriz de sizigias e uma variante da
matriz de Hankel. A principal contribui c~ao na abordagem presente e o uso da teoria
birracional subjacente a alguns desses ideais para mostrar uma profunda rela c~ao entre
os geradores das pot^encias simb olicas e os fatores de invers~ao decorrentes da aplica c~ao
inversa.
|
50 |
Potências simbólicas de ideais perfeitos de codimensão 2 com apresentação linearRamos, Zaqueu Alves 31 January 2012 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-10T17:51:10Z
No. of bitstreams: 2
Tese_Zaqueu_Biblioteca.pdf: 772846 bytes, checksum: a11fb05e14d751f21a3f45c1aa5cae4a (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-10T17:51:10Z (GMT). No. of bitstreams: 2
Tese_Zaqueu_Biblioteca.pdf: 772846 bytes, checksum: a11fb05e14d751f21a3f45c1aa5cae4a (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2012 / O tema desse trabalho s~ao as pot^encias simb olicas de ideais perfeitos de codimens~
ao 2 com apresenta c~ao linear. Estudamos mais profundamente os casos onde os
elementos s~ao formas lineares gerais e onde a matriz de sizigias e uma variante da
matriz de Hankel. A principal contribui c~ao na abordagem presente e o uso da teoria
birracional subjacente a alguns desses ideais para mostrar uma profunda rela c~ao entre
os geradores das pot^encias simb olicas e os fatores de invers~ao decorrentes da aplica c~ao
inversa.
|
Page generated in 0.0515 seconds