1 |
Mathematical models of immunityMathewson, Donald Jeffrey January 1990 (has links)
A cross-linking model for the activation of the A cell or immune accessory cell as a function of certain extracellular conditions is developed to determine the valency of the specific factor receptor on the A cell surface. It is found that such a determination can be made based on the FWHM of cross-linking curves which differ by a full order of magnitude between the bivalent receptor case and the monovalent receptor case. This determination can be made provided one can obtain accurate values for the equilibrium constants which characterize the system and provided that activation and IL-1 secretion is a linear function of cross-linking. It is also found that a determination of valence can be made if the equilibrium constants are such that substantial one receptor bridge formation takes place (one antibody molecule bound on both ends by the same receptor). This one-receptor bridge formation only takes place if the receptor is bivalent, and it presents itself in the cross-linking curve in a very distinctive manner.
A second network model described as an ecological competition model of steady state lymphocyte populations is presented. This model, known as the symmetrical network theory is analysed numerically by integration of the differential equations and shown to provide a reasonable qualitative picture of the immune system's stable steady states, and offer a glimpse of state switching. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
2 |
Efeitos de topologia em sistemas biológicos / Effects to topology in biological systemsClaudino, Elder de Souza 25 February 2013 (has links)
In this work we analyse two problems coming from theoretical biology. In the first part we propose a spatially structured population model which is defined on a continuous lattice. In the model individuals disperse at a constant rate v and competition is local and delimitated by the competition radius R. Due to dispersal, the neighborhooh size fluctuates over time. We analyse how these variables affect the adaptive process. While the fixation probabilities of beneficial mutations are roughly the same as in a panmitic population for small and intermediate fitness effects s, a dependence on v and R appears for large s. These quantities also strongly influence fixation times. The model exhibits a dual behavior displaying a power-law growth for the fixation rate and speed of adaptation with the beneficial mutation rate as observed in spatially structured population models, but simultaneously showing a non-saturating behavior for the speed of adaptation with the population size. In the second part we numerically study the dynamics of model imune networks with random and scale-free topologies. We observe that a memory state is reached when the antigen is attached to the most connected sites of the network, where as a percolation state may occur when the antigen attaches to the less connected sites. For increasing values of the connectivity, its population converges exponentially to the asymptotic value of the memory state. On the other hand, the next-nearest populations evolve slowly as power-laws towards the virgin-like state. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, analisamos dois problemas provenientes da biologia teórica. Na primeira parte, propomos um modelo de população espacialmente estruturada, que é definido numa rede contínua. No modelo, indivíduos se dispersam numa taxa constante v e a competição é local e delimitada pelo raio de competição R. Devido à dispersão, o tamanho da vizinhança flutua ao longo do tempo. Analisamos como essas variáveis afetam o processo adaptativo. Embora as probabilidades de fixação de mutações benéficas sejam aproximadamente as mesmas que numa população panmítica para valores de adaptação de pequeno e médio s, uma dependência de v e R aparece para grandes s. Estas quantidades também influenciam fortemente os tempos de fixação. O modelo exibe um comportamento duplo que indica um crescimento em lei de potência para a taxa de fixação e a velocidade de adaptação com a taxa de mutação benéfica como observado em modelos de população espacialmente estruturadas, mas simultaneamente mostra um comportamento não saturante para a velocidade de adaptação com o tamanho da população. Na segunda parte, estudamos numericamente a dinâmica de modelos de redes imunes com topologias aleatória e livre de escala. Observamos que um estado memória é alcançado quando o antígeno é ligado aos sítios mais conectados da rede enquanto que um estado de percolação pode ocorrer quando o antígeno se liga aos sítios menos conectados. Para maiores valores de conectividade, sua população converge exponencialmente para o valor assintótico do estado de memória. Por outro lado, as populações mais próximas evoluem lentamente, como leis de potência para o estado virgem.
|
Page generated in 0.071 seconds