• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ARMA-CIGMN : an Incremental Gaussian Mixture Network for time series analysis and forecasting / ARMA-CIGMN : uma rede incremental de mistura gaussiana para análise e previsão de séries temporais

Flores, João Henrique Ferreira January 2015 (has links)
Este trabalho apresenta um novo modelo de redes neurais para análise e previsão de séries temporais: o modelo ARMA-CIGMN (do inglês, Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) além dos resultados obtidos pelo mesmo. Este modelo se baseia em modificações realizadas em uma versão reformulada da IGMN. A IGMN Clássica, CIGMN, é similar à versão original da IGMN, porém baseada em uma abordagem estatística clássica, a qual também é apresentada neste trabalho. As modificações do algoritmo da IGMN foram feitas para melhor adpatação a séries temporais. O modelo ARMA-CIGMN demonstra boa capacidade preditiva e a modelagem ainda pode ser auxiliada por conhecidas ferramentas estatísticas como a função de autorrelação (acf, do original em inglês autocorrelation function) e a de autocorrelação parcial (pacf, do original em inglês partial autocorrelation function), já utilizadas em modelagem de séries temporais e nos modelos da IGMN original. As comparações foram feitas utilizando-se séries conhecidas e dados simulados. Foram selecionados para comparação os modelos estatísticos clássicos ARIMA (do inglês, Autoregressive Integrated Moving Average), a IGMN original e duas modificações feitas ainda na IGMN original:(i) um modelo similar ao modelo ARMA (do inglês, Autoregressive Moving Average) clássico e (ii) um modelo similar ao modelo NOE (do inglês, Nonlinear Output Error). Também é apresentada um versão reformulada da IGMN, usando a abordagem clássica da estatística, necessária para o desenvolvimento do modelo ARMA-CIGMN. / This work presents a new model of neural network for time series analysis and forecasting: the ARMA-CIGMN (Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) model and its analysis. This model is based on modifications made to a reformulated IGMN, the Classical IGMN (CIGMN). The CIGMN is similar to the original IGMN, but based on a classical statistical approach. The modifications to the IGMN algorithm were made to better fit it to time series. The proposed ARMA-CIGMN model demonstrates good forecasts and the modeling procedure can also be aided by known statistical tools as the autocorrelation (acf) and partial autocorrelation functions (pacf), already used in classical statistical time series modeling and also with the original IGMN algorithm models. The ARMA-CIGMN model was evaluated using known series and simulated data. The models used for comparisons were the classical statistical ARIMA model and its variants, the original IGMN and two modifications over the original IGMN: (i) a modification similar to a classical ARMA (Autoregressive Moving Average) model and (ii) a similar NOE (Nonlinear Output Error) model. It is also presented a reformulated IGMN version with a classical statistical approach, which is needed for the ARMA-CIGMN model.
2

ARMA-CIGMN : an Incremental Gaussian Mixture Network for time series analysis and forecasting / ARMA-CIGMN : uma rede incremental de mistura gaussiana para análise e previsão de séries temporais

Flores, João Henrique Ferreira January 2015 (has links)
Este trabalho apresenta um novo modelo de redes neurais para análise e previsão de séries temporais: o modelo ARMA-CIGMN (do inglês, Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) além dos resultados obtidos pelo mesmo. Este modelo se baseia em modificações realizadas em uma versão reformulada da IGMN. A IGMN Clássica, CIGMN, é similar à versão original da IGMN, porém baseada em uma abordagem estatística clássica, a qual também é apresentada neste trabalho. As modificações do algoritmo da IGMN foram feitas para melhor adpatação a séries temporais. O modelo ARMA-CIGMN demonstra boa capacidade preditiva e a modelagem ainda pode ser auxiliada por conhecidas ferramentas estatísticas como a função de autorrelação (acf, do original em inglês autocorrelation function) e a de autocorrelação parcial (pacf, do original em inglês partial autocorrelation function), já utilizadas em modelagem de séries temporais e nos modelos da IGMN original. As comparações foram feitas utilizando-se séries conhecidas e dados simulados. Foram selecionados para comparação os modelos estatísticos clássicos ARIMA (do inglês, Autoregressive Integrated Moving Average), a IGMN original e duas modificações feitas ainda na IGMN original:(i) um modelo similar ao modelo ARMA (do inglês, Autoregressive Moving Average) clássico e (ii) um modelo similar ao modelo NOE (do inglês, Nonlinear Output Error). Também é apresentada um versão reformulada da IGMN, usando a abordagem clássica da estatística, necessária para o desenvolvimento do modelo ARMA-CIGMN. / This work presents a new model of neural network for time series analysis and forecasting: the ARMA-CIGMN (Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) model and its analysis. This model is based on modifications made to a reformulated IGMN, the Classical IGMN (CIGMN). The CIGMN is similar to the original IGMN, but based on a classical statistical approach. The modifications to the IGMN algorithm were made to better fit it to time series. The proposed ARMA-CIGMN model demonstrates good forecasts and the modeling procedure can also be aided by known statistical tools as the autocorrelation (acf) and partial autocorrelation functions (pacf), already used in classical statistical time series modeling and also with the original IGMN algorithm models. The ARMA-CIGMN model was evaluated using known series and simulated data. The models used for comparisons were the classical statistical ARIMA model and its variants, the original IGMN and two modifications over the original IGMN: (i) a modification similar to a classical ARMA (Autoregressive Moving Average) model and (ii) a similar NOE (Nonlinear Output Error) model. It is also presented a reformulated IGMN version with a classical statistical approach, which is needed for the ARMA-CIGMN model.
3

ARMA-CIGMN : an Incremental Gaussian Mixture Network for time series analysis and forecasting / ARMA-CIGMN : uma rede incremental de mistura gaussiana para análise e previsão de séries temporais

Flores, João Henrique Ferreira January 2015 (has links)
Este trabalho apresenta um novo modelo de redes neurais para análise e previsão de séries temporais: o modelo ARMA-CIGMN (do inglês, Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) além dos resultados obtidos pelo mesmo. Este modelo se baseia em modificações realizadas em uma versão reformulada da IGMN. A IGMN Clássica, CIGMN, é similar à versão original da IGMN, porém baseada em uma abordagem estatística clássica, a qual também é apresentada neste trabalho. As modificações do algoritmo da IGMN foram feitas para melhor adpatação a séries temporais. O modelo ARMA-CIGMN demonstra boa capacidade preditiva e a modelagem ainda pode ser auxiliada por conhecidas ferramentas estatísticas como a função de autorrelação (acf, do original em inglês autocorrelation function) e a de autocorrelação parcial (pacf, do original em inglês partial autocorrelation function), já utilizadas em modelagem de séries temporais e nos modelos da IGMN original. As comparações foram feitas utilizando-se séries conhecidas e dados simulados. Foram selecionados para comparação os modelos estatísticos clássicos ARIMA (do inglês, Autoregressive Integrated Moving Average), a IGMN original e duas modificações feitas ainda na IGMN original:(i) um modelo similar ao modelo ARMA (do inglês, Autoregressive Moving Average) clássico e (ii) um modelo similar ao modelo NOE (do inglês, Nonlinear Output Error). Também é apresentada um versão reformulada da IGMN, usando a abordagem clássica da estatística, necessária para o desenvolvimento do modelo ARMA-CIGMN. / This work presents a new model of neural network for time series analysis and forecasting: the ARMA-CIGMN (Autoregressive Moving Average Classical Incremental Gaussian Mixture Network) model and its analysis. This model is based on modifications made to a reformulated IGMN, the Classical IGMN (CIGMN). The CIGMN is similar to the original IGMN, but based on a classical statistical approach. The modifications to the IGMN algorithm were made to better fit it to time series. The proposed ARMA-CIGMN model demonstrates good forecasts and the modeling procedure can also be aided by known statistical tools as the autocorrelation (acf) and partial autocorrelation functions (pacf), already used in classical statistical time series modeling and also with the original IGMN algorithm models. The ARMA-CIGMN model was evaluated using known series and simulated data. The models used for comparisons were the classical statistical ARIMA model and its variants, the original IGMN and two modifications over the original IGMN: (i) a modification similar to a classical ARMA (Autoregressive Moving Average) model and (ii) a similar NOE (Nonlinear Output Error) model. It is also presented a reformulated IGMN version with a classical statistical approach, which is needed for the ARMA-CIGMN model.
4

HIGMN : an IGMN-based hierarchical architecture and its applications for robotic tasks

Pereira, Renato de Pontes January 2013 (has links)
O recente campo de Deep Learning introduziu a área de Aprendizagem de Máquina novos métodos baseados em representações distribuídas e abstratas dos dados de treinamento ao longo de estruturas hierárquicas. A organização hierárquica de camadas permite que esses métodos guardem informações distribuídas sobre os sinais sensoriais e criem conceitos com diferentes níveis de abstração para representar os dados de entrada. Este trabalho investiga o impacto de uma estrutura hierárquica inspirada pelas ideias apresentadas em Deep Learning, e com base na Incremental Gaussian Mixture Network (IGMN), uma rede neural probabilística com aprendizagem online e incremental, especialmente adequada para as tarefas de robótica. Como resultado, foi desenvolvida uma arquitetura hierárquica, denominada Hierarchical Incremental Gaussian Mixture Network (HIGMN), que combina dois níveis de IGMNs. As camadas de primeiro nível da HIGMN são capazes de aprender conceitos a partir de dados de diferentes domínios que são então relacionados na camada de segundo nível. O modelo proposto foi comparado com a IGMN em tarefas de robótica, em especial, na tarefa de aprender e reproduzir um comportamento de seguir paredes, com base em uma abordagem de Aprendizado por Demonstração. Os experimentos mostraram como a HIGMN pode executar três diferentes tarefas em paralelo (aprendizagem de conceitos, segmentação de comportamento, e aprendizagem e reprodução de comportamentos) e sua capacidade de aprender um comportamento de seguir paredes e reproduzi-lo em ambientes desconhecidos com novas informações sensoriais. A HIGMN conseguiu reproduzir o comportamento de seguir paredes depois de uma única, simples e curta demonstração do comportamento. Além disso, ela adquiriu conhecimento de diferentes tipos: informações sobre o ambiente, a cinemática do robô, e o comportamento alvo. / The recent field of Deep Learning has introduced to Machine Learning new meth- ods based on distributed abstract representations of the training data throughout hierarchical structures. The hierarchical organization of layers allows these meth- ods to store distributed information on sensory signals and to create concepts with different abstraction levels to represent the input data. This work investigates the impact of a hierarchical structure inspired by ideas on Deep Learning and based on the Incremental Gaussian Mixture Network (IGMN), a probabilistic neural network with an on-line and incremental learning, specially suitable for robotic tasks. As a result, a hierarchical architecture, called Hierarchical Incremental Gaussian Mixture Network (HIGMN), was developed, which combines two levels of IGMNs. The HIGMN first-level layers are able to learn concepts from data of different domains that are then related in the second-level layer. The proposed model was compared with the IGMN regarding robotic tasks, in special, the task of learning and repro- ducing a wall-following behavior, based on a Learning from Demonstration (LfD) approach. The experiments showed how the HIGMN can perform parallely three different tasks concept learning, behavior segmentation, and learning and repro- ducing behaviors and its ability to learn a wall-following behavior and to perform it in unknown environments with new sensory information. HIGMN could reproduce the wall-following behavior after a single, simple, and short demonstration of the behavior. Moreover, it acquired different types of knowledge: information on the environment, the robot kinematics, and the target behavior.
5

HIGMN : an IGMN-based hierarchical architecture and its applications for robotic tasks

Pereira, Renato de Pontes January 2013 (has links)
O recente campo de Deep Learning introduziu a área de Aprendizagem de Máquina novos métodos baseados em representações distribuídas e abstratas dos dados de treinamento ao longo de estruturas hierárquicas. A organização hierárquica de camadas permite que esses métodos guardem informações distribuídas sobre os sinais sensoriais e criem conceitos com diferentes níveis de abstração para representar os dados de entrada. Este trabalho investiga o impacto de uma estrutura hierárquica inspirada pelas ideias apresentadas em Deep Learning, e com base na Incremental Gaussian Mixture Network (IGMN), uma rede neural probabilística com aprendizagem online e incremental, especialmente adequada para as tarefas de robótica. Como resultado, foi desenvolvida uma arquitetura hierárquica, denominada Hierarchical Incremental Gaussian Mixture Network (HIGMN), que combina dois níveis de IGMNs. As camadas de primeiro nível da HIGMN são capazes de aprender conceitos a partir de dados de diferentes domínios que são então relacionados na camada de segundo nível. O modelo proposto foi comparado com a IGMN em tarefas de robótica, em especial, na tarefa de aprender e reproduzir um comportamento de seguir paredes, com base em uma abordagem de Aprendizado por Demonstração. Os experimentos mostraram como a HIGMN pode executar três diferentes tarefas em paralelo (aprendizagem de conceitos, segmentação de comportamento, e aprendizagem e reprodução de comportamentos) e sua capacidade de aprender um comportamento de seguir paredes e reproduzi-lo em ambientes desconhecidos com novas informações sensoriais. A HIGMN conseguiu reproduzir o comportamento de seguir paredes depois de uma única, simples e curta demonstração do comportamento. Além disso, ela adquiriu conhecimento de diferentes tipos: informações sobre o ambiente, a cinemática do robô, e o comportamento alvo. / The recent field of Deep Learning has introduced to Machine Learning new meth- ods based on distributed abstract representations of the training data throughout hierarchical structures. The hierarchical organization of layers allows these meth- ods to store distributed information on sensory signals and to create concepts with different abstraction levels to represent the input data. This work investigates the impact of a hierarchical structure inspired by ideas on Deep Learning and based on the Incremental Gaussian Mixture Network (IGMN), a probabilistic neural network with an on-line and incremental learning, specially suitable for robotic tasks. As a result, a hierarchical architecture, called Hierarchical Incremental Gaussian Mixture Network (HIGMN), was developed, which combines two levels of IGMNs. The HIGMN first-level layers are able to learn concepts from data of different domains that are then related in the second-level layer. The proposed model was compared with the IGMN regarding robotic tasks, in special, the task of learning and repro- ducing a wall-following behavior, based on a Learning from Demonstration (LfD) approach. The experiments showed how the HIGMN can perform parallely three different tasks concept learning, behavior segmentation, and learning and repro- ducing behaviors and its ability to learn a wall-following behavior and to perform it in unknown environments with new sensory information. HIGMN could reproduce the wall-following behavior after a single, simple, and short demonstration of the behavior. Moreover, it acquired different types of knowledge: information on the environment, the robot kinematics, and the target behavior.
6

HIGMN : an IGMN-based hierarchical architecture and its applications for robotic tasks

Pereira, Renato de Pontes January 2013 (has links)
O recente campo de Deep Learning introduziu a área de Aprendizagem de Máquina novos métodos baseados em representações distribuídas e abstratas dos dados de treinamento ao longo de estruturas hierárquicas. A organização hierárquica de camadas permite que esses métodos guardem informações distribuídas sobre os sinais sensoriais e criem conceitos com diferentes níveis de abstração para representar os dados de entrada. Este trabalho investiga o impacto de uma estrutura hierárquica inspirada pelas ideias apresentadas em Deep Learning, e com base na Incremental Gaussian Mixture Network (IGMN), uma rede neural probabilística com aprendizagem online e incremental, especialmente adequada para as tarefas de robótica. Como resultado, foi desenvolvida uma arquitetura hierárquica, denominada Hierarchical Incremental Gaussian Mixture Network (HIGMN), que combina dois níveis de IGMNs. As camadas de primeiro nível da HIGMN são capazes de aprender conceitos a partir de dados de diferentes domínios que são então relacionados na camada de segundo nível. O modelo proposto foi comparado com a IGMN em tarefas de robótica, em especial, na tarefa de aprender e reproduzir um comportamento de seguir paredes, com base em uma abordagem de Aprendizado por Demonstração. Os experimentos mostraram como a HIGMN pode executar três diferentes tarefas em paralelo (aprendizagem de conceitos, segmentação de comportamento, e aprendizagem e reprodução de comportamentos) e sua capacidade de aprender um comportamento de seguir paredes e reproduzi-lo em ambientes desconhecidos com novas informações sensoriais. A HIGMN conseguiu reproduzir o comportamento de seguir paredes depois de uma única, simples e curta demonstração do comportamento. Além disso, ela adquiriu conhecimento de diferentes tipos: informações sobre o ambiente, a cinemática do robô, e o comportamento alvo. / The recent field of Deep Learning has introduced to Machine Learning new meth- ods based on distributed abstract representations of the training data throughout hierarchical structures. The hierarchical organization of layers allows these meth- ods to store distributed information on sensory signals and to create concepts with different abstraction levels to represent the input data. This work investigates the impact of a hierarchical structure inspired by ideas on Deep Learning and based on the Incremental Gaussian Mixture Network (IGMN), a probabilistic neural network with an on-line and incremental learning, specially suitable for robotic tasks. As a result, a hierarchical architecture, called Hierarchical Incremental Gaussian Mixture Network (HIGMN), was developed, which combines two levels of IGMNs. The HIGMN first-level layers are able to learn concepts from data of different domains that are then related in the second-level layer. The proposed model was compared with the IGMN regarding robotic tasks, in special, the task of learning and repro- ducing a wall-following behavior, based on a Learning from Demonstration (LfD) approach. The experiments showed how the HIGMN can perform parallely three different tasks concept learning, behavior segmentation, and learning and repro- ducing behaviors and its ability to learn a wall-following behavior and to perform it in unknown environments with new sensory information. HIGMN could reproduce the wall-following behavior after a single, simple, and short demonstration of the behavior. Moreover, it acquired different types of knowledge: information on the environment, the robot kinematics, and the target behavior.

Page generated in 0.0542 seconds