• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Urea derivatives of some imino compounds ...

Southard, Julia Lurena, January 1938 (has links)
Thesis (Ph. D.)--University of Chicago, 1936. / Lithoprinted. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois." Includes bibliographical references.
2

Synthesis, reactivity, and catalysis of 3-iminophosphine palladium complexes /

Shaffer, Andrew Ronald. January 2009 (has links)
Thesis (Ph. D.)--University of Toledo, 2009. / Typescript. "Submitted as partial fulfillment of the requirements for the Doctor of Philosophy in Chemistry." Includes bibliographical references (leaves 183-217).
3

Iminopropadienones syntheses and reations /

Shtaiwi, Majed Hamad Mohammad Attari Shtaiwi. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2002. / Includes bibliographical references.
4

Structure and chemistry of retinylidene iminium salts and related systems.

Elia, George Richard. Childs, R.F. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1993. / Source: Dissertation Abstracts International, Volume: 54-12, Section: B, page: 6168. Adviser: R. F. Childs.
5

The extent of perturbation of skin models by transdermal penetration enhancers investigated by ³¹P NMR and fluorescence spectroscopy

Burch, Charmita P. January 2007 (has links)
Thesis (Ph. D.)--Georgia State University, 2007. / Title from thesis title screen. Author's name from thesis title screen. Jerry C. Smith, committee chair; Kathryn Grant, Stuart Allison, committee members. Electronic text (148 p. : ill. (some col.)) : digital PDF file. Description based on contents viewed October 5, 2007. Includes bibliographical references (p. 124-148).
6

Synthesis of beta-lactam-4-ylidenes and their application as synthons for novel beta-lactam synthetic methodologies.

Zoghbi, Michel. Warkentin, John. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1991. / Source: Dissertation Abstracts International, Volume: 54-02, Section: B, page: 0835.
7

Radical cyclization to the imino functional group.

Tomaszewski, Miroslaw Jerzy. Warkentin, John. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1992. / Source: Dissertation Abstracts International, Volume: 54-12, Section: B, page: 6173. Adviser: J. Warkentin.
8

Bactericidal Mechanisms of Escapin, A Protein in the Ink of a Sea Hare

Ko, Kochun 07 May 2011 (has links)
@font-face { font-family: "Arial"; }@font-face { font-family: "MS 明朝"; }@font-face { font-family: "Calibri"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; text-indent: 0.5in; line-height: 200%; font-size: 11pt; font-family: "Times New Roman"; }p.MsoBodyText, li.MsoBodyText, div.MsoBodyText { margin: 0in 0in 6pt; text-indent: 0.5in; line-height: 200%; font-size: 11pt; font-family: "Times New Roman"; }span.BodyTextChar { font-family: Calibri; }div.Section1 { page: Section1; } A 60 kDa monomeric protein isolated from the defensive purple ink secretion of the sea hare Aplysia californica has broad antimicrobial activity in tryptone peptone rich medium. This protein, which we call ‘escapin’, belongs to an L-amino acid oxidase family. The goals of my project were 1) to determine the products of escapin’s oxidation of its main substrate L-lysine, 2) to characterize the antimicrobial effects of escapin’s products, and 3) determine bactericidal mechanisms of action of these products. Escapin is a powerful bactericidal agent against several bacteria species including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Vibrio harveyi. Escapin operates through a two-step process: 1) deamination of L-amino acids (especially L-lysine) by enzymatic activity to produce escapin intermediate products of L-lysine (EIP-K), hydrogen peroxide, and ammonia; and 2) EIP-K simultaneously reacts with hydrogen peroxide to generate escapin end products (EEP-K). EIP exists as an equilibrium mixture of the linear a-keto analogue of lysine and its cyclic forms, and the relative amount of the linear form increases with pH decreases. The powerful bactericidal effect of escapin requires the simultaneous presence of hydrogen peroxide and EIP-K in weak acidic conditions, which suggests that linear form of EIP-K with hydrogen peroxide is responsible for the bactericidal effect of escapin. Using E. coli MC4100 as a model, the mechanism of action of escapin was examined. Brief treatment with EIP-K + H2O2, but not EIP-K or H2O2 alone, causes irreversible DNA condensation with a time course similar to the bactericidal effect. A mutant strain resistant to EIP-K + H2O2 was isolated, and a single point mutation was found in the oxidative stress regulator gene (oxyR). Through a complementary assay, it was shown that wild type E. coli is conferred resistance to EIP-K + H2O2 by carrying mutated oxyR plasmid. Furthermore, in this bactericidal effect, heat or cold shock does not substitute for hydrogen peroxide induced oxidative stress. Thus, escapin’s powerful bactericidal effect may be through irreversible DNA condensation mediated through hydrogen peroxide generating an oxidative stress response, but the pathway mediating EIP-K’s synergistic effect is still unclear.

Page generated in 0.062 seconds