• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 13
  • 12
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Monitoramento terapêutico e modelagem farmacocinética de antimicrobianos em pacientes queimados da unidade de terapia intensiva / Therapeutic drug monitoring and pharmacokinetics of antimicrobial agents in burn patients from the Intensive care unit

Karin Jannet Vera López 14 September 2009 (has links)
A sepse após a injúria térmica é a maior causa de morbidade e mortalidade em pacientes queimados, uma vez que profundas alterações ocorrem na farmacocinética de agentes antimicrobianos. Investigaram-se trinta e um pacientes, portadores de sepse documentada e apresentando lesões ativas; utilizou-se o tratamento empírico conforme seguem os regimes de dose: 1 g, 12/12 h para a vancomicina, 1 g, 6/6 h para o imipenem e 2 g, 8/8 h para o cefepime. Sete coletas seriadas de sangue foram realizadas através de cateter venoso (2 mL/cada); o plasma foi obtido pela centrifugação e armazenado no congelador (-80o C) até o ensaio. A concentração plasmática dos antimicrobianos foi determinada simultaneamente pela aplicação do método bioanalítico desenvolvido no estudo. O método de cromatografia líquida de alta eficiência demonstrou boa linearidade, precisão e exatidão para a determinação simultânea da vancomicina, cefepime e imipenem plasmáticos; a plicação desse método bioanalítico permitiu o monitoramento plasmático terapêutico e o estudo farmacocinético. Com base nos resultados obtidos de concentração plasmática versus tempo, aplicou-se a modelagem para investigar a farmacocinética desses agentes antimicrobianos nos pacientes queimados. Os parâmetros cinéticos foram estimados com base no modelo aberto de um compartimento pela aplicação do programa PK Solutions v. 2.0; a estatística foi realizada pela utilização do programa GraphPad Prism v. 4.0. Com base na farmacocinética alterada, as concentrações obtidas para a vancomicina e imipenem se mostraram abaixo dos valores recomendados para atingir eficácia; por outro lado, as concentrações obtidas para o cefepime se mostraram dentro da faixa recomendada para atingir eficácia, uma vez que não se registrou alteração da farmacocinética deste antimicrobiano nos pacientes queimados. Desta forma, o monitoramento plasmático terapeutico se mostrou importante, permitindo o ajuste de dose para a vancomicina e para o imipenem, uma vez que a concentração minima efetiva (CME) não foi atingida para ambos pela utilização do regime de dose empírica nos pacientes queimados. Por outro lado, o monitoramento do cefepime plasmático também se mostrou de relevância, uma vez que os pacientes queimados com longa permanência na terapia intensiva podem apresentar disfunção renal em alguma fase da internação; consequentemente, a individualização de dose será recomendada para esses pacientes. Adicionalmente, investigou-se a disposição cinética da vancomicina em nove pacientes queimados após duas diferentes intervenções cirúrgicas. Comparou-se a farmacocinética da vancomicina pós-desbridamento versus pos-enxerto com base no monitoramento plasmático após o regime de dose empírica (1 g, 12/12 h). Após multiplas infusões, o vale da vancomicina plasmática foi obtido pela coleta de sangue imediatamente antes da infusão subsequente e está relacionado ao acúmulo no estado de equilíbrio. Em conseqüência da depuração aumentada e meia-vida biológica reduzida pós-desbridamento comparado ao pós-enxerto, registrou-se para a vancomicina vale abaixo da concentração efetiva mínima nos pacientes queimados. Finalmente, os resultados obtidos no presente estudo permitem concluir que a farmacocinética da vancomicina e do imipenem está alterada nos pacientes queimados com sepse, e recomenda-se o monitoramento das concentrações plasmáticas para garantir a eficácia de forma a previnir a emergência bacteriana. / Sepsis after thermal injury is the major cause of morbidity and mortality in burn patients, once deep changes on the pharmacokinetics of antimicrobials agents are expected. Thirty one burn patients were investigated, all of them had documented sepsis and presented active lesions; they were treated with empirical dose regimen as follows: 1 g, 12/12 h for vancomycin, 1 g, 6/6 h for imipenem and 2 g, 8/8 h for cefepime. A serial of seven blood samples were collected from the venous catheter (2 mL/each); plasma was obtained by centrifugation and storaged in an ultra-low freezer (-80o C) until assay. Drug plasma concentration was determined simultaneously by application of a bioanalytical method described previously. High performance liquid chromatographic method showed good linearity, precision and accuracy for vancomycin, cefepime and imipenem plasma measurements; its application permitted therapeutic drug monitoring and pharmacokinetic studies. Pharmacokinetic modeling was applied to data obtained based on drug plasma concentrations versus time, to investigate those antimicrobial agents in burn patients. Estimated kinetic parameters were based on the one compartment open model by application the software PK Solutions v. 2.0; statistics was performed by using the software GraphPad Prism v. 4.0. Based on altered pharmacokinetics, obtained plasma concentrations to reach drug efficacy were below the recommended values for vancomycin and imipenem; on the other hand, cefepime plasma concentrations to reach drug efficacy were in the recommended range, once its pharmacokinetics didnt change in burn patients. Then, therapeutic plasma monitoring was cost-effective permitting dose adjustment for vancomycin and imipenem, once the minimum effective concentration (MEC) wasnt reached for both antimicrobial agents by using the empirical dose regimen for burn patients. On the other hand, cefepime plasma monitoring was also cost-effective, since burn patients long term therapy can present renal dysfunction at the minimum one period in the intensive care unit; consequently, dose adjustment could be required for them. Additionally, vancomycin kinetic disposition was investigated in nine burn patients after two different surgical interventions. Vancomycin pharmacokinetics post-debridement versus post-skin grafting procedure was compared based on drug plasma monitoring by using the empirical dose regimen (1 g, 12/12 h). Trough vancomycin plasma level after multiple infusions, obtained by blood collection before de next dose, is related to drug accumulation at the steady state level; then, trough below the minimum effective concentration (MEC) were obtained after both surgical procedures performed in burn patients. Meanwhile, increased plasma clearance and reduced biological half-life were obtained after debridement compared skin grafting procedure. Finally, data obtained in the present study permit to conclude that the pharmacokinetics is altered for vancomycin and imipenem in burn patients with sepsis, and drug plasma monitoring is recommended to guarantee drug efficacy and to prevent the bacterial emergency.
22

Análise molecular da expressão do fenótipo multi-droga resistente (MDR) em enterobactérias isoladas de amostras clínicas após exposição in vitro ao Imipenem / Molecular analysis of multi-drug resistant phenotype expression (MDR) in enterobacteria isolated from clinical specimens after exposure in vitro to imipenem.

Mónica Alejandra Pavez Aguilar 26 February 2014 (has links)
Após o surgimento e disseminação das β-lactamases de amplo espectro em membros da família Enterobacteriaceae, os antibióticos carbapenêmicos (imipenem, meropenemeertapenem) têm sido considerados a terapia de escolha devido à estabilidade apresentada contra estas enzimas. A desvantagem destes antibióticos é a sua capacidade de induzir resistência aos β-lactâmicos e a outros antibióticos quimicamente não relacionados. O imipenem tem favorecido a indução de cefalosporinases cromossômicas (AmpC) e também tem sido relacionado, in vivo, com a seleção de mecanismos intrínsecos de resistência, contribuindo com o perfil multi -droga resistente (MDR). Esse perfil é freqüentemente associado à diminuição da permeabilidade por alteração na síntese de porinas em conjunto com um aumento da atividade de bombas de efluxo, as quais não permitem o estabelecimento de uma concentração ativa do antibiótico no interior da célula bacteriana. O presente trabalho teve como objetivo avaliar o estabelecimento do perfil MDR em enterobactérias provenientes de isolados clínicos em função da exposição a diferentes concentrações de imipenemin vitro. A seleção do grupo das amostras estudadas foi feito por meio da determinação do perfil de sensibilidade dos isolados, tipagem molecular e ensaio de hidrólise de Imipenem. Nos isolados selecionados para a indução foi realizada numa etapa inicial (etapa basal) a análise de porinas de membrana externa por SDS-PAGE e o estudo de genes codificadores de β-lactamases pela técnica de PCR. O estudo do estabelecimento do perfil MDR foi feito por meio de passagens sucessivas das amostras em meio contendo concentrações sub-inibitórias de imipenem seguido de análise fenotípica (CIM e acúmulo do antibiótico intracelular e SDS-PAGE), e a análise da expressão gênica de genes associados a permeabilidade de membrana (ompC, ompF eAcrA) e genes reguladores(marA e ompR). Após a indução com o imipenem, 77% dos isolados induzidos aumentaram a CIM para os carbapenêmicos, mudando assim o perfil de resistência observado na etapa basal Também foi afetado o perfil de resistência para outros antibióticos não relacionados a β-lactámicos, porém numa percentagem menor. Com relação à alteração da permeabilidade, a perda de porina foi observada apenas para um isolado, no entanto a diminuição na expressão gênica de Omp36 foi significativa desde o começo da indução. A expressão da bomba de efluxoAcrAB foi afetada pela indução com imipenem, aumentando significativamente a expressão de AcrA, enquanto os reguladores estudados, MarA e OmpR tiveram a sua expressão induzida pelo imipenem. Foi possível observar também associação do nível de expressão gênica do regulador MarA com a expressão de AcrA,porém não foi possível observar uma associação estatisticamente significativa deste regulador com o perfil de expressão de OMPs. A indução de OmpR foi associado com um aumento da expressão de RNAm de Omp35, já para Omp36 foi possível observar apenas uma tendência na repressão deste gene. O estudo da resposta destes genes reguladores e determinantes de resistência, em resposta à exposição ao com o imipenem in vitro, permitiu reportar o comportamento molecular da bactéria numa resposta adaptativa no estagio inicial do estabelecimento do fenótipo MDR. A utilização de isolados clínicos com diversos determinantes de resistência permitiu observar a variabilidade nas respostas adaptativas das enterobacterias, o que é fundamental para a compreensão dos mecanismos de adaptação da bactéria e sua contribuição na falha terapêutica. / After emergence and broad dissemination of extended spectrum β-lactamases into the Enterobacteriaceae family, the carbapenemic antibiotics (imipenem, meropenem and ertapenem) have been considered the chosen therapy in the treatment of nosocomial infections by the stability that these antibiotics show to these enzymes. The disadvantage of carbapenems is theirs capacity to induce resistance against β-lactamics and to other chemically unrelated antibiotics. The imipenem has been shown to induce chromosomal cephalosporinases (AmpC) and it was also related, in vivo, with the selection of intrinsic mechanism leading to multi-drug resistance profile (MDR). This profile is usually associated with membrane impermeability due to reduced outer membrane porin synthesis with an incremented activity of efflux pumps, which results in a reduced concentration of antibiotics inside the bacteria. This study aimed to evaluate the establishment of the MDR profile in Enterobacteriaceae from clinical isolates by exposure to different concentrations of imipenem in vitro. The selection of the study group was performed by determination of antibiotic susceptibility profile,molecular typing and hydrolysis assay of imipenem. In the selected isolates submitted to induction, in an initial step (baseline), was performed the outer membrane porin analysis by SDS-PAGE and the gene-specific amplification of B-lactamase enzymes by PCR. The study of the establishment of MDR was performed by progressive passages with subclinical concentrations of imipenem, followed each one by the evaluation of phenotypic profile (MIC, accumulation antibiotic in celland SDS-PAGE) and gene expression analysisof genes related to membrane permeability (ompC, ompF and acrA) and regulatory genes(MarA and ompR). After induction with imipenem, 77 % of the isolates increased the MIC for the carbapenems, changing the resistance profile at the baseline. In a lesser percentage, the resistance profile to other β-lactams-unrelated antibiotics was also affected. Loss of porin was observed only for an isolated, however a significantly decreased Omp36 mRNA expression was observed from the start of induction. The expression of the efflux pump AcrAB ,was also affected by the imipenem induction, significantly increasing the AcrA gene expression, whereas the studied regulatory genes,MarA and OmpR,were induced by the imipenem. It was also possible to observe an association between the expression of the regulator MarA and the expression of AcrA, nevertheless no association was observed between this regulator and OMPs . OmpR induction was associated with an increased Omp35mRNA expression, however only a trend for the repression of Omp36was observed. The study of the response of these regulatory genes and genetic determinants of resistance, in response to the imipenem exposure in vitro, allowed to report the molecular behavior of the bacteria in an adaptive response in the initial stage of the establishment of a MDR phenotype. The use of clinical isolates with diverse resistance determinants allowed observing the variability in adaptive responses in enterobacteria, which is important to understand the adaptive mechanisms of bacteria to this antibiotic, the involvement in the emergence of the MDR profile and its contribution to the treatment failure.
23

Characterization of imipenem-resistant Pseudomonas aeruginosa in Hong Kong.

January 2008 (has links)
Yip, Yuen Fong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 128-146). / Abstracts in English and Chinese. / Abstract (in English) --- p.i / Abstract (in Chinese) --- p.iii / Acknowledgments --- p.v / Table of Contents --- p.vi / List of Figures --- p.xi / List of Tables --- p.xii / List of Appendix --- p.xiv / Chapter Chapter 1 --- Introduction / Chapter 1 --- Pseudomonas aeruginosa --- p.1 / Chapter 1.1 --- Microbiology --- p.1 / Chapter 1.1.1 --- Morphology --- p.1 / Chapter 1.1.2 --- Identification --- p.1 / Chapter 1.1.3 --- Pathogenesis and virulence --- p.2 / Chapter 1.1.4 --- Host defenses --- p.2 / Chapter 1.1.5 --- Epidemiology --- p.2 / Chapter 1.1.6 --- Clinical manifestations --- p.3 / Chapter 1.1.7 --- Treatment --- p.3 / Chapter 2 --- β-Lactams --- p.4 / Chapter 2.1 --- Mode of action of β-lactams --- p.6 / Chapter 2.2 --- β-Lactams resistance --- p.7 / Chapter 2.3 --- Resistance mechanisms --- p.7 / Chapter 2.3.1 --- Changes in PBPs --- p.7 / Chapter 2.3.2 --- Impermeability --- p.8 / Chapter 2.3.3 --- β-Lactamases --- p.8 / Chapter 2.3.3.1 --- Extended spectrum β-lactamases --- p.10 / Chapter 2.3.3.2 --- Carbapenemases --- p.11 / Chapter 2.3.4 --- Efflux pump systems --- p.14 / Chapter 2.4 --- Mechanisms of imipenem resistance in P. aeruginosa --- p.16 / Chapter 2.4.1 --- Prevalence of imipenem resistant P. aeruginosa isolates --- p.18 / Chapter 3 --- Integrons --- p.20 / Chapter 3.1 --- Structure and classification --- p.20 / Chapter 3.1.1 --- Class 1 integrons --- p.21 / Chapter 3.1.2 --- Other class of integrons --- p.22 / Chapter 3.2 --- Integrons in imipenem-resistant P. aeruginosa --- p.23 / Chapter 4 --- Objectives --- p.23 / Chapter Chapter 2 --- Materials and Methods / Chapter 1 --- Materials --- p.25 / Chapter 1.1 --- Bacterial strains --- p.25 / Chapter 1.1.1 --- Bacterial strains used in this study --- p.25 / Chapter 1.1.2 --- Reference strains --- p.25 / Chapter 2 --- Methods --- p.26 / Chapter 2.1 --- Subculture of isolates --- p.26 / Chapter 2.2 --- Identification --- p.26 / Chapter 2.3 --- Antibiotic susceptibility testing --- p.26 / Chapter 2.3.1 --- Preparation of antibiotic plates --- p.27 / Chapter 2.3.2 --- Inoculation of antibiotic plates --- p.27 / Chapter 2.3.3 --- Determination of minimum inhibitory concentration (MIC) --- p.28 / Chapter 2.4 --- Phenotypic detection of metallo-beta-lactamase (MBL) production --- p.28 / Chapter 2.4.1 --- Preparation of inoculum --- p.28 / Chapter 2.4.2 --- Imipenem-EDTA disk test --- p.28 / Chapter 2.4.3 --- Determination of MBL strains --- p.29 / Chapter 2.5 --- Extraction of crude β-lactamase --- p.29 / Chapter 2.5.1 --- Detection of β-lactamase production --- p.29 / Chapter 2.6 --- Isoelectric focusing (IEF) --- p.30 / Chapter 2.6.1 --- Set up of electrophoresis equipment --- p.30 / Chapter 2.6.2 --- Sample application and instrument preparation --- p.30 / Chapter 2.6.3 --- Running conditions --- p.30 / Chapter 2.6.4 --- Detection of β-lactamase --- p.31 / Chapter 2.6.5 --- Determination of isoelectric point (pi) --- p.31 / Chapter 2.7 --- Bioassay of imipenem hydrolysis --- p.31 / Chapter 2.7.1 --- Preparation of inoculum and plate --- p.31 / Chapter 2.7.2 --- Preparation and incubation of sample mixtures --- p.32 / Chapter 2.7.3 --- Application of sample mixtures --- p.32 / Chapter 2.7.4 --- Determination of imipenem hydrolysis --- p.32 / Chapter 2.8 --- Detection of β-lactamase genes --- p.33 / Chapter 2.8.1 --- Polymerase chain reaction (PCR) --- p.33 / Chapter 2.8.2 --- Preparation of DNA template --- p.33 / Chapter 2.8.3 --- Preparation of PCR master mix --- p.33 / Chapter 2.8.4 --- PCR running conditions --- p.34 / Chapter 2.8.5 --- Agarose gel electrophoresis --- p.34 / Chapter 2.8.6 --- DNA sequencing --- p.35 / Chapter 2.9 --- Detection and characterization of integrons --- p.35 / Chapter 2.9.1 --- PCR --- p.35 / Chapter 2.9.2 --- DNA sequencing --- p.36 / Chapter 2.10 --- Detection and characterization of gene cassettes --- p.36 / Chapter 2.10.1 --- PCR --- p.36 / Chapter 2.10.2 --- DNA sequencing --- p.37 / Chapter 2.11 --- Investigation of membrane permeability --- p.37 / Chapter 2.11.1 --- Extraction of outer membrane proteins (OMP) --- p.37 / Chapter 2.11.2 --- Quantification of OMP --- p.38 / Chapter 2.11.3 --- Preparation of the albumin standards and working reagents --- p.38 / Chapter 2.11.4 --- Determination of protein concentration --- p.39 / Chapter 2.12 --- Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) --- p.39 / Chapter 2.12.1 --- Sample preparation --- p.39 / Chapter 2.12.2 --- Gel preparation and sample application --- p.39 / Chapter 2.12.3 --- Staining and destaining of the gel --- p.40 / Chapter 2.13 --- Expression of the oprD gene --- p.40 / Chapter 2.13.1 --- Extraction of RNA --- p.40 / Chapter 2.13.1.1 --- Inhibition of RNase degradation --- p.41 / Chapter 2.13.1.2 --- Removal of DNA --- p.41 / Chapter 2.13.1.3 --- Quantification of RNA samples --- p.42 / Chapter 2.13.2 --- Real-time RT-PCR --- p.42 / Chapter 2.13.2.1 --- Preparation of real-time RT-PCR mixtures --- p.42 / Chapter 2.13.2.2 --- Real-time RT-PCR running conditions --- p.43 / Chapter 2.13.2.3 --- Construction of relative standard curves --- p.43 / Chapter 2.13.3 --- Analysis of real-time RT-PCR results --- p.43 / Chapter 2.14 --- Characterization of outer membrane protein regulator mexT --- p.44 / Chapter 2.14.1 --- PCR --- p.44 / Chapter 2.14.2 --- DNA sequencing --- p.44 / Chapter Chapter 3 --- Results / Chapter 1 --- Prevalence of imipenem-resistant P. aeruginosa isolated from patients in hospitals of the New Territories East Cluster (NTEC) from 2001 to 2005 --- p.46 / Chapter 1.1 --- Age and sex distribution of patients --- p.46 / Chapter 1.2 --- Antimicrobial susceptibilities --- p.46 / Chapter 1.2.1 --- Susceptibility to carbapenems --- p.46 / Chapter 1.2.2 --- Susceptibility to other β-lactams --- p.47 / Chapter 1.2.3 --- Susceptibility to aminoglycosides and fluoroquinolones --- p.47 / Chapter 1.2.4 --- Resistance patterns --- p.48 / Chapter 2 --- Phenotypic detection of metallo-beta-lactamase (MBL) producing strains --- p.48 / Chapter 2.1 --- Characterization of β-lactamases --- p.49 / Chapter 2.1.1 --- Production of β-lactamases --- p.49 / Chapter 2.1.2 --- Determination of isoelectric points of β-lactamases --- p.49 / Chapter 2.2 --- Imipenem hydrolysis by β-lactamases --- p.50 / Chapter 2.3 --- Detection of β-lactamase genes --- p.50 / Chapter 2.3.1 --- DNA sequence determination --- p.51 / Chapter 3 --- Detection and characterization of integrons --- p.51 / Chapter 3.1 --- Antibiotic susceptibility and resistance patterns of isolates harboring integrons --- p.51 / Chapter 4 --- Detection of gene cassettes --- p.52 / Chapter 5 --- Outer membrane permeability --- p.52 / Chapter 5.1 --- Outer membrane protein profiles --- p.52 / Chapter 5.2 --- mRNA expression of the oprD gene --- p.53 / Chapter 6 --- Regulatory gene studies --- p.53 / Chapter Chapter 4 --- Discussion / Chapter 1 --- Epidemiological characteristics of imipenem-resistant P. aeruginosa --- p.55 / Chapter 1.1 --- Prevalence of P. aeruginosa --- p.55 / Chapter 2 --- Antibiotic susceptibilities of imipenem-resistant P. aeruginosa --- p.56 / Chapter 3 --- Mechanisms of imipenem resistance in P. aeruginosa --- p.59 / Chapter 3.1 --- Production of β-lactamases --- p.59 / Chapter 3.2 --- Outer membrane permeability --- p.63 / Chapter 3.3 --- Effects of regulatory gene mutations --- p.64 / Chapter 4 --- Integrons in imipenem-resistant P. aeruginosa --- p.66 / Chapter 5 --- Conclusions --- p.67 / Chapter 6 --- Areas for further study --- p.67 / Figures --- p.69 / Tables --- p.82 / Appendix --- p.121 / References --- p.128
24

Neurotoxicity of β-lactam antibiotics : experimental kinetic and neurophysiological studies

Schliamser, Silvia E. January 1988 (has links)
The neurotoxic potential of intravenous administered benzylpenicillin (BPC) was studied in rabbits with intact blood-CNS barriers and rabbits with experimental E. coli meningitis. At onset of epileptogenic EEG activity or seizures, serum, CSF and brain tissue were collected for assay of BPC. Based on the fact that, in tissues, BPC seems to remain extracellularly, brain concentrations of BPC were expressed as brain tissue fluid (BTF) levels, calculated as lOx the concentration in whole brain tissue. Neurotoxicity could be precipitated in all rabbits. In normal rabbits BTF levels of BPC were considerably higher than those in CSF indicating a better penetration across the blood-brain barrier (BBB). BPC penetrated better to CSF and BTF in meningitic rabbits than in normal controls, suggesting some degree of damage of the BBB concomitant with meningeal inflammation. E. coli meningitis did not increase the neurotoxicity of BPC. In control rabbits the intracistemal injection of saline resulted in some degree of pleocytosis. Unmanipulated animals are therefore preferable as controls. Epileptogenic EEG-changes was the most precise of the two variables used for demonstration of neurotoxicity. EEG-changes were therefore used as neurotoxicity criterion in the following rabbit experiments. To evaluate the effect of uraemia alone and uraemia plus meningitis on the neurotoxity of BPC in rabbits, cephaloridine was used to induce uraemia. Meningitis was induced by intracistemal inoculation of a cephalosporinresistant strain of E. cloacae. Untreated  rabbits were used as controls. Uraemia resulted in increased BTF penetration of BPC, possibly explained by permeability changes in the BBB and/or decreased binding of BPC to albumin. Uraemia did not result in increased penetration of BPC into the CSF of non-meningitic rabbits. Uraemic non-meningitic rabbits had the highest BTF levels of BPC at the criterion, indicating that cephaloridine-induced renal failure increased the epileptogenic threshold in these rabbits. The combination of uraemia and meningitis increased the neurotoxicity of BPC since the criterion was reached at considerably lower BTF levels of BPC. Meningitis, either alone or together with uraemia, did not increase the neurotoxicity in comparison to control rabbits. Higher BTF levels of BPC were found in meningitic rabbits than in controls with intact blood-CNS barriers at onset of EEG-changes. In all groups of rabbits there was a pronounced variability of BPC levels in the CSF while the intra-group variations in BTF levels were much smaller. Thus, BTF and not CSF levels were decisive for the neurotoxicity of BPC. Using   the same EEG-model, the neurotoxic potential of imipenem/cilastatin (I) and a new penem derivative, FCE 22101 were compared in a cross-over study. Both I and FCE 22101 were significantly more neurotoxic than BPC. While BTF levels of the three antibiotics could be detected in all tested rabbits, detectable CSF levels were only found in one of twelve rabbits treated with I or FCE 22101, indicating that BTF concentrations rather than CSF ones are decisive for neurotoxicity of ß-lactam antibiotics. The EEG-model used was found to be a suitable model for cross-over studies of intravenously administered antibiotics. Using the "silent-second" as EEG-threshold, a CNS interaction between intraperitoneally administered BPC and intravenous thiopental was demonstrated in rats. The most probably site for this interaction is the organic acid transport system out of the CNS. Thiopental distribution in the rat brain seemed to depend not only on its lipid solubility. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1988, härtill 5 uppsatser.</p> / digitalisering@umu
25

The Binding Mechanism of Carbapenems in the Class A beta-lactamase IMI-1 : A Molecular Dynamics Study of Ligand Stability

Lindahl, Isabell January 2022 (has links)
Antibiotic resistance is a global and accelerating matter. Over time, the bacteria have evolved several defense mechanisms against the antibiotics. One of the defense mechanisms is that the bacteria can produce enzymes with the ability to hydrolyze the characteristic b-lactam ring of the antibiotics. These enzymes are called b-lactamases. There are three different generations of antibiotics clinically available, and b-lactamases have co-evolved with the antibiotics over the generations. The third generation of antibiotics are called the carbapenems and b-lactamases which hydrolyze carbapenems are called carbapenemases. Carbapenemases are promiscuous, which means that they hydrolyze a variety of antibiotics. The b-lactamase IMI-1 is an imipenem-hydrolyzing enzyme and imipenem is a carbapenem, hence IMI-1 is a carbapenemase. In this project, IMI-1 was investigated in complex with the carbapenems imipenem, meropenem and biapenem using computational methods. More specifically, a homology model of IMI-1 was generated and the carbapenems were docked into the model. The system was then used for MD simulations where the important molecular interactions were identified, and the binding free energies were calculated using the LIE method. The results indicate that IMI-1 has flexible loops that enables an open and a closed conformation of IMI- 1. All three carbapenems were docked and simulated in both conformations of IMI-1. The results indicate that open and closed conformations confirms the promiscuity of carbapenemases since the flexibility enables various initial binding mechanisms. in other words, the hydrolysis may occur so quickly that the binding does not have much bearing of the activity of the enzyme. Furthermore, the calculated binding free energies indicate that IMI-1 is optimized for the catalytic process rather than the binding affinity. In conclusion, IMI-1 and similar systems requires further research using computational methods to counteract antibiotic resistance based on knowledge.

Page generated in 0.0381 seconds