• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da ImobilizaÃÃo de Lipase Tipo B de Candida antarctica utilizando Fibra da Casca de Coco Verde como Suporte / Immobilization of Candida antarctica lipase B using green coconut fiber as support.

Ana Iraidy Santa BrÃgida 13 February 2006 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Em face à busca por novos suportes de baixo custo para imobilizaÃÃo de enzimas e à procura por alternativas de aproveitamento para a casca de coco verde, o presente trabalho teve como objetivo avaliar o potencial da utilizaÃÃo da fibra da casca de coco verde como suporte para imobilizaÃÃo de enzimas, em especÃfico a lipase do tipo B de Candida antarctica. Foram testadas duas tÃcnicas de imobilizaÃÃo, adsorÃÃo e ligaÃÃo covalente. As variÃveis estudadas no processo de imobilizaÃÃo por adsorÃÃo foram: concentraÃÃo inicial de enzima, tempo de contato, pH do meio de imobilizaÃÃo e pH da superfÃcie da fibra. Para concentraÃÃes iniciais de enzima no sobrenadante atà 150 U/mL, o tempo de contato de 2 horas foi suficiente para imobilizaÃÃo. Um derivado bastante estÃvel foi obtido fazendo uso de uma soluÃÃo inicial de enzima contendo 40 U/mL, em tampÃo fosfato a pH 7, para imobilizaÃÃo em fibra de coco lavada com Ãgua (pH da superfÃcie = 5), sendo o tempo de contato igual a 2 horas. O fator de estabilizaÃÃo tÃrmica a 60ÂC foi igual a 92,15 e os valores de KBmB e VBmÃxB da enzima imobilizada foram iguais aos da enzima na forma solÃvel. AlÃm disso, observou-se que a fibra possui carÃter iÃnico, sendo o processo de adsorÃÃo influenciado pelo pH do meio de imobilizaÃÃo. Quanto ao processo de imobilizaÃÃo por ligaÃÃo covalente, as variÃveis estudadas foram concentraÃÃo inicial de enzima, tempo de contato, pH do meio de imobilizaÃÃo, uso de aditivos durante o processo de imobilizaÃÃo e uso de borohidreto de sÃdio como agente redutor das bases de Schiff. Observou-se a formaÃÃo de multicamadas quando se imobilizou a enzima a partir de uma soluÃÃo contendo 280 U/mL. A presenÃa de Ãcido butÃrico e PEG 6.000 durante o processo de imobilizaÃÃo nÃo tiveram influÃncia significativa sobre a atividade hidrolÃtica do derivado e sobre a conversÃo de Ãcido butÃrico na reaÃÃo de sÃntese. O uso de borohidreto de sÃdio como agente redutor resultou em derivados menos ativos e mais instÃveis tanto no processo de imobilizaÃÃo a pH 7 quanto em pH 10. Comparando a imobilizaÃÃo a pH 7 com a imobilizaÃÃo a pH 10, maior carga enzimÃtica imobilizada, maior estabilidade operacional de sÃntese e maior estabilidade à estocagem foram obtidos com derivado imobilizados em pH 7. Num paralelo entre imobilizaÃÃo por ligaÃÃo covalente e por adsorÃÃo, concluiu-se que para meios aquosos, derivados obtidos por ligaÃÃo covalentes sÃo mais adequados, contudo, para reaÃÃes em meios orgÃnicos a imobilizaÃÃo por adsorÃÃo à mais indicada por ser uma tÃcnica simples, de baixo custo e que promove derivado bastante estÃvel. Por fim, buscando aumentar a Ãrea superficial e caracterizar o suporte estudado, foram realizados estudos investigativos da morfologia da superfÃcie da fibra e suas modificaÃÃes por tratamentos quÃmicos. / For the last few years, many researches have sought for inexpensive support matrixes to enzyme immobilization. Meanwhile, in Brazil, an effort is being made to find alternative uses to green coconut husk, an agroindustrial waste. Therefore, the present study investigates the feasibility of using green coconut fiber for the immobilization of Candida antarctica lipase B. Two immobilization strategies were investigated: adsorption and covalent attachment. The effect of different variables on adsorption process have been studied, such as: lipase loading, contact time, pH of the coupling media and pH of the support surface. A stable immobilized enzyme was obtained by contacting coconut fiber washed with water (surface pH = 5) with an enzyme solution containing 40 U/mL in sodium phosphate buffer (pH 7.0) for 2h at room temperature. The thermal stabilization factor at 60ÂC was 92.15. Kinetic parameters for Michaelis-Menten model (Km and VmÃx) were the same for both immobilized enzyme and soluble enzyme. It was also observed that coconut fiber is an ion exchange material because of the influence of the coupling media pH on adsorption. Afterwards, we have studied the effect of some variables on the covalent immobilization on coconut fiber activated with GPTMS, such as: lipase loading, contact time, pH of the coupling media, use of additives during the immobilization and sodium borohydride as reducing agent of the Schiffâs bases formed on the covalent attachment. It was observed that a high enzyme loading, for instance 280 U/mL of initial enzyme concentration on the supernatant, promoted a multilayer immobilization. The effect of butyric acid and PEG 6.000, both used as additives during immobilization, were not significant on hydrolytic activity or butyric acid conversion. The use of sodium borohydride as a reducing agent of the Schiffâs bases promoted a loss on the immobilized enzyme activity. Moreover, the immobilized enzyme obtained after the reduction was less stable considering thermal stability in all the cases studied. Best results of enzyme loading, operational stability of synthesis and storage stability were obtained when the enzyme was immobilized covalently at pH 7. Drawing a comparison between adsorption and covalent attachment, results allow concluding that, for aqueous media reactions, the use of immobilized enzyme by covalent attachment is more indicated. However, the immobilization by adsorption a suitable method for organic media reactions, since it is cheaper and a very stable immobilized enzyme is obtained. Finally, searching to increase the surface area of the support and to characterize it, somo studies have been made on the fiber morphologic characteristics and on its modifications after each treatment.
2

PREPARAÃÃO DE BIOCATALISADORES UTILIZANDO LIPASE DE Candida antarctica TIPO B IMOBILIZADA PARA A SÃNTESE DE ÃSTERES DE VITAMINA A / PREPARATION OF BIOCATALYSTS USING LIPASE TYPE B OF Candida antarctica IMMOBILIZED FOR THE SYNTHESIS OF VITAMIN A ESTERS

James Almada da Silva 12 February 2007 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho foi estudar a preparaÃÃo de biocatalisadores utilizando lipase de Candida antarctica tipo B (CALB) imobilizada covalentemente em quitosana, uma matÃria-prima abundante e de baixo custo no CearÃ, em quitosana-alginato e em agarose, com o intuito de utilizÃ-los na sÃntese de Ãsteres de vitamina A. Diversas estratÃgias de imobilizaÃÃo foram realizadas com o intuito de obter um derivado com elevada atividade enzimÃtica e com alta estabilidade tÃrmica e operacional. TrÃs tipos de suportes (agarose, quitosana e quitosana-alginato) foram preparados a partir de tais estratÃgias, sendo que um estudo aprofundado foi realizado com dois desses suportes (quitosana e quitosana-alginato). Apenas uma estratÃgia de imobilizaÃÃo foi realizada com agarose para testÃ-lo na sÃntese de palmitato de retinila, juntamente com dois derivados comerciais (lipase imobilizada de Thermomyces lanuginosus (Lipozyme TL IM) e lipase imobilizada de Mucor miehei (Lipozyme RM IM)), com o objetive de definir algumas condiÃÃes operacionais. Uma condiÃÃo avaliada que apresentou bons resultados na sÃntese foi o uso de peneira molecular para a retirada de Ãgua no meio reacional, sendo, portanto, utilizada nos estudos posteriores. ApÃs os estudos de imobilizaÃÃo e estabilidade tÃrmica a 60 ÂC, dois derivados (J8: quitosana ativada com glicidol seguido de etilenodiamina (EDA) e glutaraldeÃdo, e G10: quitosana-alginato ativada com glutaraldeÃdo) foram escolhidos, por apresentarem maiores atividades especÃficas (422,44 Â 50,4 U/g e 378,30 Â 34,7 U/g, respectivamente) e melhores estabilidades tÃrmicas (fatores de estabilizaÃÃo de 10,25 e 29,00, respectivamente), para estudos de estabilidade operacional de hidrÃlise e para sÃntese de palmitato de retinila. O derivado que apresentou melhor estabilidade tÃrmica a 60ÂC foi o G10, CALB imobilizada em quitosana-alginato, sendo aproximadamente 29 vezes mais estÃvel que a enzima solÃvel, e mais de 2 vezes mais estÃvel do que a enzima comercial Novozyme 435. PorÃm, o derivado J8 apresentou melhor estabilidade operacional de hidrÃlise, semelhante ao derivado comercial Novozyme 435. Um planejamento experimental 22 foi realizado para se avaliar a sÃntese de palmitato de retinila. Avaliou-se a influÃncia da temperatura (37 ÂC e 45 ÂC) e da razÃo entre os substratos, retinol:Ãcido palmÃtico (1:3 e 1:5), no rendimento de sÃntese, catalisada pelo derivado J8. Uma reaÃÃo utilizando o derivado G10 utilizando a melhor condiÃÃo do planejamento experimental foi realizada para ver o comportamento desse derivado. Com uma anÃlise estatÃstica dos resultados, pÃde-se observar que a razÃo entre os substratos teve efeito significativo no rendimento de sÃntese. Maiores foram obtidos quando a razÃo entre substratos foi igual a 1:5. Como os resultados nas temperaturas de 37 ÂC e 45 ÂC foram semelhantes, selecionou-se a temperatura de 37 ÂC para reaÃÃes posteriores, por necessitar de um menor gasto de energia para atingi-la / The objective of this work was to study the preparation of biocatalysts using lipase of Candida antarctica type B (CALB) covalently immobilized in agarose, chitosan, an abundant and low cost raw material, to be used in the synthesis of ester of Vitamin A. Several strategies of immobilization were studied in order to obtain a biocatalyst with good enzymatic activity and high thermal and operational stabilities. Three types of supports (agarose, chitosan and chitosanalginate) were activated by different strategies, but most of attention was given to the supports chitosan and chitosan-alginate. Only one derivative was prepared by immobilizing CALB in agarose and results of synthesis were compared to commercial derivatives (immobilized lipase of Thermomyces lanuginosus - Lipozyme TL IM - and immobilized lipase of Mucor miehei - Lipozyme RM IM), for the definition of some operational conditions. The operational condition that presented good results in the synthesis was used in further studies, such as removal of water from the reacional media by molecular sieves. After immobilization and thermal stabilities at 60 ÂC tests, two derivatives (J8: chitosan actived with glicidol follow by EDA and glutaraldehyde; G10: chitosan-alginate actived with glutaraldehyde) were selected: the ones that presented higher specific activities (422.44 Â 50.4 U/g and 378.30 Â 34.7 U/g, respectively) and best thermal stabilities (factors of stabilization of 10.25 and 29.0, respectively). Operational hydrolytic stabilities and the performance of these biocatalysts on the synthesis of retinyl palmitate were evaluated. One factorial design 22 was carried out to evaluate the synthesis of retinyl palmitate. The influence of the temperature (37 ÂC and 45 ÂC) and ratio between substrates concentration, retinol: palmitic acid (1:3 and 1:5), in the yield of synthesis, catalyzed for the J8 derivative, were evaluated. A statistical analysis of the results showed that the the most significant effect was the rate of substrates concentration. Higher yields of synthesis were obtained when the ratio of substrates concentration was equal to 1:5. Results of reaction yields at 37ÂC and 45 ÂC were very similar. Therefore, 37 ÂC was selected for further studies. Best results for thermal stability at 60ÂC were obtained for G10, CALB immobilized in chitosan-alginate, being approximately 29-fold more stable than soluble enzyme, and 2-fold more stable than the commercial enzyme (Novozyme 435). On the other hand, J8, CALB immobilized in chitosan, presented higher operational hydrolysis stability, with a similar deactivation profile to Novozyme 435

Page generated in 0.0893 seconds