• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application Of Fully Implicit Coupled Method For 2d Incompressible Flows On Unstructured Grids

Zengin, Seyda 01 November 2012 (has links) (PDF)
In the subject of Computational Fluid Dynamics (CFD), there seems to be small number of important progress in the pressure-based methods for several decades. Recent studies on the implicit coupled algorithms for pressure-based methods have brought a new insight. This method seems to provide a huge reduction in the solution times over segregated methods. Fully implicit coupled algorithm for pressure-based methods is very new subject with only few papers in literature. One of the most important work in this area is referenced as [1] in this thesis. Another source of information about the method comes from a commercially available code FLUENT which includes the algorithm as an option for pressure-based solver. However the algorithm in FLUENT does not seem to be a fully implicit with a little information in its manual. In this thesis, a fully implicit coupled pressure-based solver is developed mainly based on the available literature. The developed code is succesfully tested against some test cases.
2

Peridynamic Modeling of Fiber-Reinforced Composites with Polymer and Ceramic Matrix

Hu, Yile, Hu, Yile January 2017 (has links)
This study focuses on developing novel modeling techniques for fiber-reinforced composites with polymer and ceramic matrix based on Peridynamic approach. To capture the anisotropic material behaviors of composites under quasi-static and dynamic loading conditions, a new peridynamic model for composite laminate and a modified peridynamic approach for non-uniform discretization are proposed in this study. In order to achieve the numerical implementation of the proposed model and approach, a mixed implicit-explicit solver based on GPU parallel computing is developed as well. The new peridynamic model for composite laminates does not have any limitation in fiber orientation, material properties and stacking sequence. It can capture the expected orthotropic material properties and coupling behaviors in laminates with symmetric and asymmetric layups. Unlike the previous models, the new model enables the evaluation of stress and strain fields in each ply of the laminate. Therefore, it permits the use of existing stress- or strain-based failure criteria for damage prediction. The computation of strain energy stored at material points allows the energy-based failure criteria required for delamination propagation and fatigue crack growth. The capability of this approach is verified against benchmark solutions, and validated by comparison with the available experimental results for three laminate layups with an open hole under tension and compression. The modified peridynamic approach for non-uniform discretization enables computational efficiency and removes the effect of geometric truncations in the simulation. This approach is a modification to the original peridynamic theory by splitting the strain energy associated with an interaction between two material points according to the volumetric ratio arising from the presence of non-uniform discretization and variable horizon. It also removes the requirement for correction of peridynamic material parameters due to surface effects. The accuracy of this approach is verified against the benchmark solutions, and demonstrated by considering cracking in nuclear fuel pellet subjected to a thermal load with non-uniform discretizations. Unlike the previous peridynamic simulations which primarily employs explicit algorithm, this study introduces implicit algorithm to achieve peridynamic simulation under quasi-static loading condition. The Preconditioned Conjugate Gradient (PCG) and Generalized Minimal Residual (GMRES) algorithms are implemented with GPU parallel computing technology. Circulant preconditioner provides significant acceleration in the convergence of peridynamic analyses. To predict damage evolution, the simulation is continued with standard explicit algorithms. The validity and performance of this mixed implicit-explicit solver is established and demonstrated with benchmark tests.

Page generated in 0.0377 seconds