Spelling suggestions: "subject:"imprimantes 3D"" "subject:"impriment 3D""
1 |
Towards optimal design of multiscale nonlinear structures : reduced-order modeling approaches / Vers une conception optimale des structures multi-échelles non-linéaires : approches de réduction de modèleXia, Liang 25 November 2015 (has links)
L'objectif principal est de faire premiers pas vers la conception topologique de structures hétérogènes à comportement non-linéaires. Le deuxième objectif est d’optimiser simultanément la topologie de la structure et du matériau. Il requiert la combinaison des méthodes de conception optimale et des approches de modélisation multi-échelle. En raison des lourdes exigences de calcul, nous avons introduit des techniques de réduction de modèle et de calcul parallèle. Nous avons développé tout d’abord un cadre de conception multi-échelle constitué de l’optimisation topologique et la modélisation multi-échelle. Ce cadre fournit un outil automatique pour des structures dont le modèle de matériau sous-jacent est directement régi par la géométrie de la microstructure réaliste et des lois de comportement microscopiques. Nous avons ensuite étendu le cadre en introduisant des variables supplémentaires à l’échelle microscopique pour effectuer la conception simultanée de la structure et de la microstructure. En ce qui concerne les exigences de calcul et de stockage de données en raison de multiples réalisations de calcul multi-échelle sur les configurations similaires, nous avons introduit: les approches de réduction de modèle. Nous avons développé un substitut d'apprentissage adaptatif pour le cas de l’élasticité non-linéaire. Pour viscoplasticité, nous avons collaboré avec le Professeur Felix Fritzen de l’Université de Stuttgart en utilisant son modèle de réduction avec la programmation parallèle sur GPU. Nous avons également adopté une autre approche basée sur le potentiel de réduction issue de la littérature pour améliorer l’efficacité de la conception simultanée. / High-performance heterogeneous materials have been increasingly used nowadays for their advantageous overall characteristics resulting in superior structural mechanical performance. The pronounced heterogeneities of materials have significant impact on the structural behavior that one needs to account for both material microscopic heterogeneities and constituent behaviors to achieve reliable structural designs. Meanwhile, the fast progress of material science and the latest development of 3D printing techniques make it possible to generate more innovative, lightweight, and structurally efficient designs through controlling the composition and the microstructure of material at the microscopic scale. In this thesis, we have made first attempts towards topology optimization design of multiscale nonlinear structures, including design of highly heterogeneous structures, material microstructural design, and simultaneous design of structure and materials. We have primarily developed a multiscale design framework, constituted of two key ingredients : multiscale modeling for structural performance simulation and topology optimization forstructural design. With regard to the first ingredient, we employ the first-order computational homogenization method FE2 to bridge structural and material scales. With regard to the second ingredient, we apply the method Bi-directional Evolutionary Structural Optimization (BESO) to perform topology optimization. In contrast to the conventional nonlinear design of homogeneous structures, this design framework provides an automatic design tool for nonlinear highly heterogeneous structures of which the underlying material model is governed directly by the realistic microstructural geometry and the microscopic constitutive laws. Note that the FE2 method is extremely expensive in terms of computing time and storage requirement. The dilemma of heavy computational burden is even more pronounced when it comes to topology optimization : not only is it required to solve the time-consuming multiscale problem once, but for many different realizations of the structural topology. Meanwhile we note that the optimization process requires multiple design loops involving similar or even repeated computations at the microscopic scale. For these reasons, we introduce to the design framework a third ingredient : reduced-order modeling (ROM). We develop an adaptive surrogate model using snapshot Proper Orthogonal Decomposition (POD) and Diffuse Approximation to substitute the microscopic solutions. The surrogate model is initially built by the first design iteration and updated adaptively in the subsequent design iterations. This surrogate model has shown promising performance in terms of reducing computing cost and modeling accuracy when applied to the design framework for nonlinear elastic cases. As for more severe material nonlinearity, we employ directly an established method potential based Reduced Basis Model Order Reduction (pRBMOR). The key idea of pRBMOR is to approximate the internal variables of the dissipative material by a precomputed reduced basis computed from snapshot POD. To drastically accelerate the computing procedure, pRBMOR has been implemented by parallelization on modern Graphics Processing Units (GPUs). The implementation of pRBMOR with GPU acceleration enables us to realize the design of multiscale elastoviscoplastic structures using the previously developed design framework inrealistic computing time and with affordable memory requirement. We have so far assumed a fixed material microstructure at the microscopic scale. The remaining part of the thesis is dedicated to simultaneous design of both macroscopic structure and microscopic materials. By the previously established multiscale design framework, we have topology variables and volume constraints defined at both scales.
|
Page generated in 0.0666 seconds