• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1605
  • 690
  • 348
  • 186
  • 180
  • 93
  • 71
  • 54
  • 46
  • 32
  • 19
  • 18
  • 11
  • 10
  • 7
  • Tagged with
  • 3979
  • 574
  • 490
  • 468
  • 464
  • 428
  • 405
  • 399
  • 370
  • 360
  • 332
  • 315
  • 311
  • 308
  • 306
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1321

A study on laser weldability improvement of newly developed Haynes 282 superalloy

Osoba, Lawrence January 2012 (has links)
Haynes alloy 282 is a new gamma prime (γ’) precipitation strengthened nickel-base superalloy developed for high temperature applications in land-based and aero turbine engines. Joining is a crucial process both during the manufacturing of new components and repair of service-damaged turbine parts. Unfortunately, the new superalloy cracks during laser beam welding (LBW), which is an attractive technique for joining superalloys components due to its low heat input characteristic that preclude the geometrical distortion of welded components. This research is therefore initiated with the goal of studying and developing an effective approach for preventing or minimizing cracking during LBW of the new superalloy Haynes 282. Careful and detailed electron microscopy and spectroscopy study reveal, for the first time, the formation of sub-micron grain boundary M5B3 particles, in the material. Microstructural study of welded specimens coupled with Gleeble thermo-mechanical physical simulations shows that the primary cause of weld heat affected zone (HAZ) cracking in the alloy is the sub-solidus liquation reaction of intergranular M5B3 borides in the material. Further weldability study showed that the HAZ liquation cracking problem worsens with reduction in welding heat input, which is normally necessary to produce the desired weld geometry with minimum distortion. In order to minimize the HAZ cracking during low heat input laser welding, microstructural modification of the alloy by heat treatment at 1080 - 1100oC has been developed. The pre-weld heat treatment minimizes cracking in the alloy by reducing the volume fraction of the newly identified M5B3 borides, while also minimizing non-equilibrium grain boundary segregation of boron liberated during dissociation of the boride particles. Further improvement in resistance to cracking was produced by subjecting the material to thermo-mechanically induced grain refinement coupled with a pre-weld heat treatment at 1080oC. This approach produces, for the first time, crack-free welds in this superalloy, and the benefit of this procedure in preventing weld cracking in the new material is preserved after post-weld heat treatment (PWHT), as additional cracking was not observed in welded specimens subjected to PWHT.
1322

Iterative Reconstruction Algorithms for Polyenergetic X-ray Computerized Tomography

Rezvani, Nargol 19 December 2012 (has links)
A reconstruction algorithm in computerized tomography is a procedure for reconstructing the attenuation coefficientscient, a real-valued function associated with the object of interest, from the measured projection data. Generally speaking, reconstruction algorithms in CT fall into two categories: direct, e.g., filtered back-projection (FBP), or iterative. In this thesis, we discuss a new fast matrix-free iterative reconstruction method based on a polyenergetic model. While most modern x-ray CT scanners rely on the well-known filtered back-projection algorithm, the corresponding reconstructions can be corrupted by beam hardening artifacts. These artifacts arise from the unrealistic physical assumption of monoenergetic x-ray beams. In this thesis, to compensate, we use an alternative model that accounts for differential absorption of polyenergetic x-ray photons and discretize it directly. We do not assume any prior knowledge about the physical properties of the scanned object. We study and implement different solvers and nonlinear unconstrained optimization methods, such as a Newton-like method and an extension of the Levenberg-Marquardt-Fletcher algorithm. We explain how we can use the structure of the Radon matrix and the properties of FBP to make our method matrix-free and fast. Finally, we discuss how we regularize our problem by applying different regularization methods, such as Tikhonov and regularization in the 1-norm. We present numerical reconstructions based on the associated nonlinear discrete formulation incorporating various iterative optimization methods.
1323

Electrical Properties and Band Diagram of InSb-InAs Nanowire Type-III Heterojunctions

Chen, Chao-Yang 21 November 2013 (has links)
The electrical properties of nanowire-based n-InSb-n-InAs heterojunctions grown by chemical beam epitaxy were investigated both theoretically and experimentally. This heterostructure presented a type-III band alignment with the band bendings at 0.12 eV for InAs side and 0.16 − 0.21 eV in InSb. Analysis of the temperature dependent current voltage characteristics showed that the current through the heterojunction is caused mostly by generation-recombination processes in the InSb and at the heterointerface. Due to the partially overlapping valence band of InSb and the conduction band of InAs, the second process was fast and activationless. Theoretical analysis showed that, depending on the heterojunction parameters, the flux of non-equilibrium minority carriers may have a different direction, explaining the experimentally observed non-monotonic coordinate dependence of the electron beam induced current at the vicinity of heterointerface.
1324

Electrical Properties and Band Diagram of InSb-InAs Nanowire Type-III Heterojunctions

Chen, Chao-Yang 21 November 2013 (has links)
The electrical properties of nanowire-based n-InSb-n-InAs heterojunctions grown by chemical beam epitaxy were investigated both theoretically and experimentally. This heterostructure presented a type-III band alignment with the band bendings at 0.12 eV for InAs side and 0.16 − 0.21 eV in InSb. Analysis of the temperature dependent current voltage characteristics showed that the current through the heterojunction is caused mostly by generation-recombination processes in the InSb and at the heterointerface. Due to the partially overlapping valence band of InSb and the conduction band of InAs, the second process was fast and activationless. Theoretical analysis showed that, depending on the heterojunction parameters, the flux of non-equilibrium minority carriers may have a different direction, explaining the experimentally observed non-monotonic coordinate dependence of the electron beam induced current at the vicinity of heterointerface.
1325

Accuracy models for SLA build style decision support

Lynn, Charity M. 12 1900 (has links)
No description available.
1326

Characterization and calibration of stereolithography products and processes

Davis, Brian Edward 12 1900 (has links)
No description available.
1327

Namų dekoravimo centras "Orfis" / House decoration center "Orfis"

Vanagaitė, Rosita 02 July 2012 (has links)
Šiame darbe projektuojamas statybinių medžiagų centras, Šiauliuose, Metalistų gatvėje, su prekybinėmis patalpomis, sandėliu bei buitinėmis – adminitracinėmis patalpomis. Aprašomas sklypo planas, pastato patalpų išplanavimas, kontrukciniai sprendimai bei inžineriniai tinklai. Suprojektuota 18 m metalinė santvara SN-18, parinkta 5,6 m ilgio dvitėjo profilio sija SI-5.6, suprojektuota 5,94 m ilgio gelžbetoninė perdangos plokštė PP 594-120-22. Sudaryta perdangų montavimo technologin÷ kortelė, perdangų montavimui parinktas automobilinis kranas. Sudaryti pagrindinių konstrukcijų darbų kiekių žiniaraščiai ir pagal juos sudaryta lokalinė sąmata. Paskaičiuoti administracinių – buitinių patalpų šilumos laidumo koeficientai, šilumos nuostoliai. Pagal šiuos apskaičiuotus duomenis parinkti šildymo prietaisai. / In this work, there is a centre of building materials that is being designed in Siauliai, Metalistu Street. It consists of trading rooms, warehouse and domestic – administrative rooms. Description of the plan of the plot, layout of rooms, construction decisions and engineering networks. Designed 18 m metallic truss SN-18, selected 5,6 m length HEA-beam SI-5.6, designed 5,94 m length reinforced floor slab PP 594-120-22. Made out of floors installation technological card, for floors installing selected truck crane. Formed sheets of quantity of main constructial workings and accordingly formed local estimation. calculated administrative – domestic rooms heat-transferring coefficient, heat ranges. According to the calculated data, heating devices were chosen.
1328

Thick target preparation and isolation of 186Re from high current production via the 186W(d,2n)186Re reaction

Balkin, E. R., Gagnon, K., Dorman, E., Emery, R., Smith, B. E., Strong, K. T., Pauzauskie, P., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. 19 May 2015 (has links) (PDF)
Rhenium-186 has a half-life (t1/2 = 3.72 days) and emission of both gamma and beta particles that make it very attractive for use as a theranostic agent in targeted radionuclide therapy. 186Re can be readily prepared by the 185Re(n,γ)186Re reac-tion1. However, that reaction results in low specific activity, severely limiting the use of reactor produced 186Re in radiopharmaceuticals. It has previously been shown that high specific activity 186Re can be produced by cyclotron irradiations of 186W with protons and deuterons2,3. In this investigation we evaluated the 186W(d,2n)186Re reaction using thick target irradiations at higher incident deuteron energies and beam currents than previously reported. We elected not to use copper or aluminum foils in the preparation of our 186W targets due to their activation in the deuteron beam, so part of the investigation was an evaluation of an alternate method for preparing thick targets that withstand μA beam currents. Irradiation of 186W. Initial thick targets (~600-1100 mg) were prepared using 96.86% enriched 186W by hydraulic pressing (6.9 MPa) of tungsten metal powder into an aluminum target support. Those thick targets were irradiated for 10 minu-tes at 10 µA with nominal extracted deuteron energies of 15, 17, 20, 22, and 24 MeV. Isolation of 186Re. Irradiated targets were dissolved with H2O2 and basified with (NH4)2CO3 prior to separation using column(s) of ~100–300 mg Analig Tc-02 resin. Columns were washed with (NH4)2CO3 and the rhenium was eluted with ~80˚C H2O. Gamma-ray spectroscopy was per-formed to assess production yields, extraction yields, and radionuclidic byproducts. Recycling target material. When tested on a natural abundance W target, recovery of the oxidized WO4- target material from the resin was found to proceed rapidly with the addition of 4M HCl in the form of hydrated WO3. The excess water in the WO3 was then removed by calcination at 800 °C for 4 hours. This material was found to undergo reduction to metallic W at elevated temperatures (~1550 °C) in a tube furnace under an inert atmosphere (Ar). Quanti-fication of % reduction and composition analyses were accomplished with SEM, EDS, and XRD and were used to characterize and compare both the WO3 and reduced Wmetal products to a sample of commercially available material. Structural enhancement by surface annealing. In some experiments ~1 g WO3 pellets were prepared from Wmetal that had been chemically treated to simulate the target material recovery process described above. Following calcination, the WO3 was allowed to cool to ambient temperature, pulverized with a mortar and pestle and then uniaxially pressed at 13.8 MPa into 13 mm pellets. Conversion of the WO3 back to Wmetal in pellet form was accomplished in a tube furnace under flowing Ar at 1550 °C for 8 hours. Material characterization and product composition analyses were conducted with SEM, EDS, and XRD spectroscopy. Graphite-encased W targets. Irradiations were conducted at 20 μA with a nominal extracted deuteron energy of 17 MeV using thick targets (~750 mg) of natural abundance tungsten metal powder uniaxially pressed into an aluminum target support between layers of graphite pow-der (100 mg on top, 50 mg on the bottom). Targets were then dissolved as previously described and preliminary radiochemical isola-tion yields obtained by counting in a dose calibrator. Although irradiations of W targets were possible at 10 μA currents, difficulties were encountered in maintaining the structural integrity of the full-thickness pressed target pellets under higher beam currents. This led to further investigation of the target design for irradiations conducted at higher beam currents. Comprehensive target material characterization via analysis by SEM, EDS, XRD, and Raman Spectroscopy allowed for a complete redesign of the target maximizing the structural integrity of the pressed target pellet without impacting production or isolation. At the 10 A current, target mass loss following irradiation of an enriched 186W target was < 1 % and typical separation yields in excess of 70 % were observed. Saturated yields and percent of both 183Re (t½ = 70 days) and 184gRe (t½ = 35 days) relative to 186gRe (decay corrected to EOB) are reported in TABLE 1 below. The reason for the anomalously low yield at 24 MeV is unknown, but might be explained by poor beam alignment and/or rhenium volatility during irradiation. Under these irradiation conditions, recovery yields of the W target material from the recycling process were found to be in excess of 90% with no discernable differences noted when compared to commercially available Wmetal and WO3. Conceptually, increasing the structural integrity of pressed WO3 targets by high temperature heat treatment under an inert atmosphere is intriguing. However, the treated pellets lacked both density and structural stability resulting in disintegration upon manipulation , despite the initially encouraging energy dispersive X-ray spectroscopy (EDS) determination that 94.9% percent of the WO3 material in each pellet had been reduced to metallic W. The use of powdered graphite as a target stabi-lizing agent provided successful irradiation of natural abundance W under conditions where non-stabilized targets failed (20 µA at 17 MeV for 10 minutes). Target mass loss following irradiation of a natW target was < 1 % and a separation yield in excess of 97 % was obtained. In conclusion, the theranostic radionuclide 186Re was produced in thick targets via the 186W(d,2n) reaction. It was found that pressed W metal could be used for beam currents of 10 μA or less. For deuteron irradiations at higher beam currents, a method involving pressing W metal between two layers of graphite provides increased target stability. Both target configurations allow high recovery of radioactivity from the W target material, and a solid phase extraction method allows good recovery of 186Re. An effective approach to the recycling of enriched W has been developed using elevated temperature under an inert atmosphere. Further studies are underway with 186W targets sandwiched by graphite to assess 186Re production yields, levels of contaminant radiorhenium, power deposition, and enriched 186W material requirements under escalated irradiation conditions (20 µA and 17 MeV for up to 2 hours).
1329

Cross section measurements on 61Cu for proton beam monitoring above 20 MeV

Kuhn, S., Buchholz, M., Wels, T., Breunig, K., Scholten, B., Spahn, I., Coenen, H. H. 19 May 2015 (has links) (PDF)
Introduction All experimental studies involving charged particle induced nuclear reactions require a precise knowledge of monitor reactions. A number of well described proton induced monitor reactions exist in the lower energy range [1], which is covered by most medical cyclotrons. Concerning proton energies above 20 MeV, however, the accuracy of the monitor reactions declines as cross section data becomes scarcer. Furthermore, the growing interest in precise determination of projectile energies by comparing of ratios of monitor reaction cross sections demands new measurements and evaluations of known data for high threshold monitor radionuclides. In this work cross section measurements on the formation of 61Cu were done and energy de-pendent radionuclide ratios were calculated. Material and Methods For investigation of the natCu(p,x)61Cu reaction copper foils of natural isotopic composition (Goodfellow Ltd.) were irradiated. The targets were of 10 and 20 μm thickness, having a diameter of 15 mm. Proton bombardments up to 45 MeV incident energy were done in the stacked-foil arrangement at the accelerator JULIC of the Nuclear Physics Institute (IKP) of the Forschungszentrum Jülich. In addition to an internal irradiation possibility the cyclotron is equipped with an external target station which was used for most experiments. It can adapt standard and slanting solid target holders and is equipped with a water cooled four sector collimator and additional helium cooling of the entry foil. Several irradiations were executed. In each stack, besides copper samples, aluminium absorbers and additional nickel monitor foils were also placed, the latter for the determination of the respective beam current. The produced radioactivity of 61Cu was analysed non-destructively using HPGe γ-ray detectors (EG&G Ortec). Results and Conclusion Reaction cross sections of the natCu(p,x)61Cu process up to 45 MeV were measured and com-pared with existing data from the literature (FIG. 2). Except for the data of Williams et al. our results are in good agreement, showing a maxi-mum of about 165 mbarn at 37.5 MeV proton energy. The overall uncertainty of the new cross section data is between 8 and 10 %. In FIG. 3, the excitation functions of the relevant monitor reactions on Cu are shown. In combination with the excitation function of the natCu(p,xn)62Zn reaction, isotope ratios were calculated which can be used for determination of the proton energy within a target stack in the energy range of 22–40 MeV as described by Piel et al. [3]. FIGURE 4 shows the cross section ratio in dependence of the proton energy. Above this energy, 65Zn could be used to generate isotope ratios for energy determination, although the long half-life (T½ = 244.3 d) of that radionuclide may be a problem. Additional cross section measurements are planned in order to further strengthen the data base of this potential monitor reaction. The results of this work shall be evaluated in the framework of an ongoing Coordinated Research Project of the IAEA.
1330

Post irradiation evaluation of inconel alloy 718 beam window

Bach, H. T., Saleh, T. A., Maloy, S. A., Anderoglu, O., Romero, T. J., Connors, M. A., Kelsey, C. T., Olivas, E. R., John, K. D. 19 May 2015 (has links) (PDF)
Introduction Annealed Inconel 718 alloy was chosen for the beam window at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) [1]. The window was replaced after 5 years of operation. Mechanical properties and microstructure changes were measured to assess its expected lifetime. Material and Methods A cutting plan was developed based on the IPF rasterred beam profile (FIG. 1). 3-mm OD samples were cut out from the window and thinned to 0.25-mm thick. Shear punch tests were per-formed at 25 °C on 21 samples to quantify shear yield, ultimate shear stress, and ductility. From 1-mm OD, 0.25-mm thick shear punched out disks, 4 TEM specimens of ~30×10×2 μm were obtained using standard FIB lift-out techniques. TEM was performed on an FEI Tecnai TF30-FEG operating at 300 kV. Results and Conclusions TABLE 1 shows MCNPX tally results of accumulated dpa, He and H content from both protons and neutrons fluences and ANSYS steady-state irradiation temperature for the 3-mm OD samples [2]. These peak values are at the peak density of Typically increases in shear yield and shear maximum stress occur with increasing dose. In this case, highest shear yield and ultimate stress was on the lowest dose samples at the outer edge (FIG. 2). Optical microscopy images of the fracture surfaces on the shear punched out disks show no significant change in the fracture mode or reduction in ductility in the un-irradiated, high and low dose irradiated samples. One un-irradiated and 4 irradiated samples (5, E, 16 and 19) were selected for TEM analysis. Figure 3 shows bright field TEM images of an un-irradiated, high and low dose irradiated samples. Un-irradiated sample shows some dislocations and some large precipitates. The high dose sample #5 (~11 dpa, 122 oC) shows small loops and dislocations (left and center images) and no γ\' or γ\'\' precipitates in SAD from z = [011] (right image). Low dose sample #19 (~0.7 dpa, 40 oC) shows a high density of dislocation loops (left image), high density of H/He bubbles (center image) and presence of γ\'\' precipitates in SAD from z = [011] (right image). Radiation induced-hardening is highest at the low dose region in the outer most edge. The hardening from γ\'\' precipitates is determined to be more pronounced than that from trapped bubbles. The lack of significant hardening in the highest dose region is attributed to a lower dis-location density and no γ” precipitates or bubbles [3]. Identification of H or He bubbles and the higher accumulation of these bubbles in the low dose region (no direct beam hitting) warrant further studies. Despite the evidence of irradiation-induced hardening, this spent beam window appears to retain useful ductility after 5 years in service. At the conclusion of 2013 run cycle, the current in-service beam window had reached the same dpa as of the spent window. We plan to extend the service of the current in-service window until it reaches its intended design threshold limit of ~20 dpa (in the highest dose region). Additional measurements at higher dpa values will enable better decision-making in managing risks of the window failure.

Page generated in 0.0332 seconds