1 |
2D/3D knowledge inference for intelligent access to enriched visual content / Modélisation et inférence 2D/3D de connaissances pour l'accès intelligent aux contenus visuels enrichisSambra-Petre, Raluca-Diana 18 June 2013 (has links)
Cette thèse porte sur la catégorisation d'objets vidéo. L'objectif est d'associer des étiquettes sémantiques à des objets 2D présents dans les images/vidéos. L'approche proposée consiste à exploiter des bases d'objets 3D classifiés afin d'identifier des objets 2D inconnus. Nous proposons un schéma de reconnaissance d'objet, conçu pour fonctionner pour des applications en temps réel. La similitude entre des modèles 3D et des contenus 2D inconnu est évaluée à l'aide de la description 2D/3D. Une procédure de vote est ensuite utilisée afin de déterminer les catégories les plus probables de l'objet 2D. Nous proposons aussi une stratégie pour la sélection des vues les plus représentatives d'un objet 3D et un nouveau descripteur de contour (nommé AH). L'évaluation expérimentale a montré que, en employant la sélection intelligente de vues, le nombre de projections peut être diminué de manière significative (jusqu'à 5 fois) tout en obtenant des performances similaires. Les résultats ont également montré la supériorité de l'AH par rapport aux autres descripteurs adoptés. Une évaluation objective de la variabilité intra et inter classe des bases de données 3D impliqués dans ce travail est également proposé, ainsi qu'une étude comparative des approches d'indexations retenues. Une approche de segmentation interactive est également introduite. La méthode proposée est spécifiquement conçu pour surmonter les artefacts de compression tels que ceux mis en place par la compression JPEG. Enfin, nous présentons une plate-forme Web pour l'indexation/la recherche/la classification, qui intègre les différentes méthodologies utilisées dans cette thèse / This Ph.D. thesis tackles the issue of sill and video object categorization. The objective is to associate semantic labels to 2D objects present in natural images/videos. The principle of the proposed approach consists of exploiting categorized 3D model repositories in order to identify unknown 2D objects based on 2D/3D matching techniques. We propose here an object recognition framework, designed to work for real time applications. The similarity between classified 3D models and unknown 2D content is evaluated with the help of the 2D/3D description. A voting procedure is further employed in order to determine the most probable categories of the 2D object. A representative viewing angle selection strategy and a new contour based descriptor (so-called AH), are proposed. The experimental evaluation proved that, by employing the intelligent selection of views, the number of projections can be decreased significantly (up to 5 times) while obtaining similar performance. The results have also shown the superiority of AH with respect to other state of the art descriptors. An objective evaluation of the intra and inter class variability of the 3D model repositories involved in this work is also proposed, together with a comparative study of the retained indexing approaches . An interactive, scribble-based segmentation approach is also introduced. The proposed method is specifically designed to overcome compression artefacts such as those introduced by JPEG compression. We finally present an indexing/retrieval/classification Web platform, so-called Diana, which integrates the various methodologies employed in this thesis
|
Page generated in 0.0784 seconds