101 |
Particulate Matter and Carbon Monoxide Emission Factors from Incense BurningJilla, Abhinay, Mr. 09 August 2017 (has links)
Indoor air quality is a growing concern in the world. People spend a considerable amount of time in indoor environments such as homes, workplaces, shopping malls, stores, and so on. Indoor sources like incense and candle burning, cooking contribute a significant amount of indoor air pollutants such as particulate matter, carbon monoxide (CO), volatile organic compounds. Exposure to these kinds of pollutants can result in adverse health effects.
The purpose of this research is to determine the particulate matter and carbon monoxide emission factors (EFs) from incense stick burning. A test chamber with a rectangular exhaust duct, a fan to exhaust air with pollutants in it, and pollutant sensors were used to achieve the project goals. Several experiments were performed with different cases/scenarios to accurately estimate the EFs and several test runs were conducted for each case to test the repeatability of the results.
The CO, PM2.5 (mass), PM2.5 (number), PM10 (mass), PM10 (number) EFs developed in this research are between 110-120 mg/g of incense, 2.5-3 mg/g of incense, 800-1100 #particles/µg of incense, 32-33 mg/g of incense, 1200-1400 #particles/µg of incense respectively.
|
102 |
Risk assessment of human exposure to persistent organic pollutants associated with air particulates and settled dust in two urban centers of Pearl River DeltaWang, Wei 01 January 2013 (has links)
No description available.
|
103 |
Risk assessment of human exposure to persistent organic pollutants via indoor dust in Hong KongKang, Yuan 01 January 2011 (has links)
No description available.
|
104 |
Odhad infiltrace ultrajemných částic aerosolu pomocí metody absorbance: Kvality ovzduší ve školách / Estimating infiltration of quasi-ultrafine aerosol by the absorbance method: Air quality in schoolsStehlíková, Pavla January 2010 (has links)
Estimating infiltration of quasi-ultrafine black carbon particles by an absorbance method: air quality in Pavla Stehlíková Abstract This diploma thesis focused on the estimating quasi-ultrafine particles amount in school gyms continue previous study researched air quality in schools. The size-segregated mass concentration of particulate matter was measured in three elementary school gyms in central part of Prague, on periphery of Prague and in a small settlement Černošice during twenty campaigns, from 2005 to 2009. The mass concentration of particulate matter were measured by 5-staged Sioutas impactor. For this thesis we have selected samples on filters with particle size <0,25µm. To evaluate carbonaceous particles amount we used reflectance. Reflectance was transformed into an absorption coefficient (m- 1 .10-5 ). The average levels of absorptions coeficients were higher outdoors (14,66 ± 8,93 m- 1 .10-5 ) than indoors (13,64 ± 8,08 m-1 .10-5 ). The correlations between absorption coeffitients outdoors and indoors were significant for all schools (Spearman's correlation coefficient at intervals 0,834-0,957, regression slope 0,759-1,007), suggesting a high outdoor-to-indoor penetration rate. The weak correlation between absorption coefficients and number of exercising pupils (correlation coefficient 0,059)...
|
105 |
Co-Firing Biomass with Biogas in Cookstoves with a FanPoudyal, Manil 01 October 2014 (has links) (PDF)
Co-firing is a combustion process in which more than one type of fuel is used. In many cases, co-firing reduces fuel costs and/or reduces the environmental impact. The objective of this research was to test the hypothesis that adding biogas to be co-fired with biomass in a traditional cookstove reduces indoor air pollution and increases the combustion efficiency. The impact of co-firing on indoor air pollution is assessed by comparing the concentrations of carbon monoxide and particulate matter in the exhaust stream of a co-fired cookstove to a cookstove fueled with biomass alone. The concentrations of each of these pollutants were measured using a portable emissions monitoring system. Combustion efficiency is defined as the ratio of energy released by combustion to energy in the fuel. Instead of combustion efficiency, the impact of co-firing was assessed on the modified combustion efficiency, which is defined as CO2/(CO2+CO) on a molar basis. This is because CO and CO2 concentrations can be measured. In addition, the impact of cofiring on other parameters such as thermal efficiency, specific fuel consumption rate, and specific emission of CO, CO2, and PM were assessed. Previous investigation of biomass combustion in traditional cookstoves indicates that power harvested using a thermoelectric generator can be used to drive a fan and increase the amount of air flowing into the combustion zone. The impact of using a fan on indoor air pollution and combustion efficiency was also assessed. It was found that co-firing biomass with optimum amount of biogas reduced the emission of CO by 32 % and PM by 33 % and increased the modified combustion efficiency by 1.3 %. It was found that using a fan reduced the emission of CO by 35 % and PM by 39 % and increased the modified combustion efficiency by 1.1 %. Finally, the combination of co-firing and use of a fan reduced the emission of CO by 58 % and PM by 71 % and increased the modified combustion efficiency by 2.8 %.
|
106 |
General Bayesian Calibration Framework for Model Contamination and Measurement ErrorWang, Siquan January 2023 (has links)
Many applied statistical applications face the potential problem of model contamination and measurement error. The form and degree of contamination as well as the measurement error are usually unknown and sample-specific, which brings additional challenges for researchers. In this thesis, we have proposed several Bayesian inference models to address these issues, with the application to one type of special data for allergen concentration measurement, which is called serial dilution data and is self-calibrated.
In our first chapter, we address the problem of model contamination by using a multilevel model to simultaneously flag problematic observations and estimate unknown concentrations in serial dilution data, a problem where the current approach can lead to noisy estimates and difficulty in estimating very low or high concentrations.
In our second chapter, we propose the Bayesian joint contamination model for modeling multiple measurement units at the same time while adjusting for differences between experiments using the idea of global calibration, and it could account for uncertainty in both predictors and response variables in Bayesian regression. We are able to get efficacy gain by analyzing multiple experiments together while maintaining robustness with the use of hierarchical models.
In our third chapter, we develop a Bayesian two-step inference model to account for measurement uncertainty propagation in regression analysis when the joint inference model is infeasible. We aim to increase model inference reliability while providing flexibility to users by not restricting the type of inference model used in the first step. For each of the proposed methods, We also demonstrate how to integrate multiple model building blocks through the idea of Bayesian workflow.
In extensive simulation studies, we show that our proposed methods outperform other commonly used approaches. For the data applications, we apply the proposed new methods to the New York City Neighborhood Asthma and Allergy Study (NYC NAAS) data to estimate indoor allergen concentrations more accurately as well as reveal the underlying associations between dust mite allergen concentrations and the exhaled nitric oxide (NO) measurement for asthmatic children. The methods and tools developed here have a wide range of applications and can be used to improve lab analyses, which are crucial for quantifying exposures to assess disease risk and evaluating interventions.
|
107 |
An indoor air quality case study: the diagnosis and remediation of Cowgill Hall's IAQ problemHilten, Craig Steven 05 September 2009 (has links)
This case study documents the entire indoor air quality (IAQ) problem experienced by the students, faculty and staff of Cowgill Hall on the campus of Virginia Polytechnic Institute and State University from August 1987 to August 1988, recommends a general IAQ solution process and makes several specific suggestions to prevent the reoccurrence of the problem in Cowgill Hall. Background information on Cowgill Hall and the indoor air quality issue are also provided.
This document is addressed to students of architecture, engineering and related disciplines. It emphasizes the growing importance and possible repercussions of their design decisions on the total environment; both in and out of doors. / Master of Science
|
108 |
An evaluation of sensory comfort components of survey questionnaires used for indoor environment problems in buildingsHart-Schubert, Patrice 07 October 2005 (has links)
The efficacy of indoor environment evaluation is, in part, a function of the reliability and validity of the different measures used. This thesis presents results of a study, conducted in a building without known problems, which compares the reliability and validity of sensory comfort components from three well-known survey questionnaires. A review of literature reveals that sensory comfort theory draws upon many disciplines including, hedonics, psychometrics, and olfaction theory. The fundamental domains thermal, air quality, lighting, and acoustics and their dimensions are identified. The conceptual model integrates these theories underlying human response to sensory comfort.
The research questions involved in the selection of survey questionnaires are explored by examining sixteen indoor environment survey questionnaires. A meta-evaluation reveals that these questionnaires have three major functions, proactive, reactive, and re-evaluative studies.
Finally, the methods used to analyze survey questionnaires for reliability and validity are examined. An analysis of variance shows that the order in which questions were presented did not affect responses. The reliability of the measures tested ranged from poor to good. Examination of content and face validity by expert and untrained judges demonstrates inconsistencies in common or accepted meanings of the measures considered in evaluating the indoor environment. Analysis of construct validity indicates that not all survey questionnaire variables were categorized under their expected dimensions.
Contrary to advice found in the literature, this thesis suggests that the practice of combining items from different questionnaires is problematic. Finally, in buildings with known problems we can expect a relatively high degree of reliability and validity. However, the utility of such questionnaires in inventorying and assessing buildings without known problems will prove to be questionable. / Master of Urban and Regional Planning
|
109 |
Modifiable Risk in a Changing Climate: Linking household-level temperature, humidity, and air pollution to population healthQuinn, Ashlinn Ko January 2016 (has links)
Background: This dissertation comprises research conducted on two distinct projects. Project I focuses on the connection between household air pollution (HAP) from cooking with biomass fuels and blood pressure (BP); this research is situated in the context of a large randomized trial of a cookstove intervention in Ghana, West Africa. The setting of Project II, meanwhile, is the residential environment of New York City, where we explore temperature and humidity conditions in homes and relate these conditions to summertime heat wave risk and to the survival and transmission of respiratory viruses in the winter. Although these projects are quite distinct, each relates to the complex relationship between climate change and health. Reducing HAP to improve health (the focus of Project I) will simultaneously reduce climate change through a reduction in emissions of short-lived climate pollutants into the atmosphere. Meanwhile, furthering our understanding of heat and humidity levels inside urban residences (the focus of Project II) is crucial to our ability to protect health in light of projections for a changing climate. Domestic activities associated with heating, cooling, and cooking are thus very relevant both to human health and to climate change mitigation and adaptation.
Objectives and Methods: Our overall objective for Project I was to investigate exposure- response relationships between HAP and BP in a cohort of pregnant women taking part in the
Ghana Randomized Air Pollution and Health Study (GRAPHS). We first explored this association in a cross-sectional study (Chapter 1), in which we used 72-hour personal monitoring to ascertain levels of exposure among the GRAPHS women to carbon monoxide (CO), one of the pollutants emitted by traditional wood-fed cooking fires. These exposure data were collected at enrollment into the GRAPHS study, prior to the initiation of cooking with improved cookstoves. We investigated the association between these “baseline” CO exposure levels and the women’s blood pressure at enrollment into GRAPHS. A limitation of this study was that BP was only measured once. We followed this with a second study of 44 women drawn from the same cohort (Chapter 2), for whom we designed BP protocols using 24-hour ambulatory blood pressure monitoring (ABPM), the current gold standard for clinical diagnosis of hypertension. As we were not aware of any prior research in Africa that had employed ABPM, we also designed a parallel BP protocol using home blood pressure monitoring (HBPM) equipment for comparison with ABPM. The use of ABPM with concurrent personal CO monitoring enabled us to investigate hourly associations between CO exposure and changes in BP. We also evaluated BP in these women both before and after the cookstove intervention; this allowed us to investigate whether any changes in BP were associated with switching to an improved cookstove.
Our objectives for Project II were to understand the distribution of temperature and humidity conditions in a range of New York City homes during the summer and winter seasons, to evaluate the impact of structural and behavioral factors (e.g. building size, use of air conditioning, and use of humidifiers) on these conditions, and to build models that could help predict indoor conditions from more readily available outdoor measurements. We conducted this research in two ways. We first analyzed a set of indoor temperature and humidity measurements that were collected in 285 New York City apartments during portions of summers 2003-2011 and used these data to simulate indoor conditions during two heat wave scenarios, one of which was more moderate and the other of which was more extreme (Chapter 3). Second, we designed and conducted a new study in which temperature and humidity were monitored in a set of 40 NYC apartments between 2013 and 2015 (Chapters 4-6). This second study enabled us extend our research into the winter season, and also to explore how factors such as air conditioning and humidifier use impacted indoor temperature and humidity. We also investigated relationships between the monitored conditions, self-reported perceptions of the indoor environment, and symptoms that were experienced among household members.
Results: In the cross-sectional analysis of CO and BP in the GRAPHS cohort (Chapter 1), we found a significant positive association between CO exposure and diastolic blood pressure (DBP): on average, each 1 ppm increase in exposure to CO was associated with 0.43 mmHg higher DBP [0.01, 0.86]. A non-significant positive trend was also observed for systolic blood pressure (SBP). In our study of the acute relationship between CO exposure and BP (Chapter 2), we determined that peak CO exposure (defined as above the 90th percentile of the exposure distribution, or an average of 4.1ppm) in the two hours prior to BP measurement was associated with elevations in hourly systolic BP (4.3 mmHg [95% CI: 1.1, 7.4]) and diastolic BP (4.5 mmHg [95% CI: 1.9, 7.2]), as compared to BP following lower CO exposures. We also observed a non-significant trend toward lower BP following initiation of cooking with an improved cookstove. Lastly, we demonstrated that ABPM was a feasible and well-tolerated tool for BP assessment in a rural West African setting.
For Project II in New York City, we first determined that there was a great deal of variability in indoor summer heat index (HI) between homes in association with similar outdoor conditions, and that this variability increased with increasing outdoor heat (Chapter 3). Our simulation of a moderate heat wave led us to conclude that the hottest 5% of the homes would reach peak indoor heat index (HI) values of 39°C. In a more extreme heat wave simulation, HI in the hottest 5% of homes reached a peak of 41oC and did not drop below 34oC for the entire nine- day simulated heat wave period.
Our second indoor monitoring study yielded the following findings: in the summer season (Chapter 4), we found significant differences in indoor temperature and heat index according to the type of air conditioning (AC) in the home. Homes with central AC were the coolest, followed by homes with ductless AC, window AC, and no AC. Apartments on the top floor of a building were significantly hotter than other apartments regardless of the presence of AC. During the winter season (Chapter 5), median vapor pressure in our sample of apartments was 6.5mb. Comparing humidity levels in the apartments to a threshold of 10mb vapor pressure that has been proposed as protective against influenza virus transmission, levels of absolute humidity in the homes remained below this threshold for 86% of the winter: a total of over three months. Residential use of humidifiers was not associated with higher indoor humidity levels. Larger building size (above 100 units) was significantly associated with lower humidity, while the presence of a radiator heating system was non-significantly associated with higher humidity. Lastly, perceptions of indoor temperature and measured temperature were significantly associated in both the summer and the winter (Chapter 6), while sleep quality was inversely related to measured indoor temperature in the summer season only. Reports of heat- stress symptoms were associated with perceived, but not measured, temperature in the summer season.
Conclusions: The work presented in this dissertation adds to a growing body of evidence on the importance of exposures in the domestic environment to health and well-being. The research reported here on household air pollution in Ghana documents an exposure-response relationship between air pollution from cookstoves and elevations in blood pressure, on both a chronic and an acute basis. As elevated BP is a known risk factor for cardiovascular disease (CVD), our research provides support for a plausible factor linking HAP exposure to CVD. Meanwhile, our research on temperature and humidity in New York City residences provides concrete data to supplement the very slim literature to date documenting these conditions in the home environment, where Americans spend over half their time. We conclude, first, that AC may not be fully protective against summertime heat risk, and second, that the levels of humidity we observed in residential environments are consistent with levels that have been shown to promote enhanced survival and transmission of respiratory viruses in experimental settings. We suggest that interventions that can reduce exposure to household air pollution and excess indoor heat can also mitigate climate change, and that with thoughtful planning we can improve health at the same time as we foster resiliency in the face of a changing climate.
|
110 |
Indoor air pathogens and HVAC systems in office buildingsLee, Kai-Yip, 李繼業 January 2004 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
Page generated in 0.1198 seconds