Spelling suggestions: "subject:"infrastructure dde transport"" "subject:"infrastructure dee transport""
1 |
Kommunikationer, tillgänglighet, omvandling : en studie av samspelet mellan kommunikationsnät och näringsstruktur i Sveriges mellanstora städer 1850-1970 /Westlund, Hans, January 1992 (has links)
Akadamisk avhandling--Umeå, 1992. / Bibliogr. p. 222-230. Résumé en anglais.
|
2 |
Capitalisation immobilière des gains d'accessibilité étude de cas sur l'agglomération lyonnaise /Deymier, Ghislaine Crozet, Yves. January 2005 (has links)
Reproduction de : Thèse de doctorat : Sciences économiques. Economie des transports : Lyon 2 : 2005. / Titre provenant de l'écran-titre. Bibliogr.
|
3 |
The role of market uncertainty in infrastructure projectsDanau, Daniel Bonnafous, Alain January 2007 (has links)
Reproduction de : Thèse doctorat : Sciences économiques. Economie des transports : Lyon 2 : 2007. / Titre provenant de l'écran-titre. Bibliogr.
|
4 |
L'axe durancien : aménagement et transport /Mestre, Catherine. January 2002 (has links)
Texte remanié de: Th. doct.--Géogr.--Aix Marseille 1, 1999. / Bibliogr. p. 287-301.
|
5 |
Linéarité des villes nouvelles de Séoul une nouvelle centralité face à l' extension urbaine et au développement du réseau de transport /Choi, Min-Ah Goldblum, Charles January 2008 (has links) (PDF)
Reproduction de : Thèse de doctorat : Urbanisme : Paris 8 : 2007. / Titre provenant de l'écran-titre. Bibliogr. f. 435-444.
|
6 |
Die Entwicklung des Verkehrs im industriellen Ballungsraum der Städte und Gemeinden des Wuppertals im 19. und frühen 20. Jahrhundert : ein Beitrag zur Verkehrsgeschichte des Wuppertals /Leers, Hans-Ludwig, January 2006 (has links)
Dissertation--Universität Wuppertal, 2005. / Bibliogr. p. 363-461.
|
7 |
Adaptation des infrastructures de transport du MTQ au Nunavik : bilan de la performance et validation de la méthode de conception thermiqueBaron Hernandez, Maria Fernanda 24 March 2024 (has links)
Depuis plusieurs années, les changements climatiques ont une grande influence sur la dégradation du pergélisol, laquelle impacte directement la stabilité des infrastructures. Le Nunavik est la partie nord de la province de Québec où il n'y a pas de routes ou de voies ferrées reliant les villages. Le transport aérien et maritime est donc essentiel pour assurer la communication entre les villages et le reste de la province. La construction de remblais de transport affecte inévitablement le régime thermique du sol et peut entraîner une dégradation thermique du pergélisol sous-jacent, ce qui entraîne une perte importante des capacités structurelles et fonctionnelles de l'infrastructure. Pour réduire les impacts du dégel du pergélisol sur les infrastructures de transport, plusieurs techniques de protection ont été développées. Ces différentes techniques sont basées sur la réduction de l’apport de chaleur sous l’infrastructure et sur l’augmentation de l’extraction de chaleur du remblai. Ce document présente l’’analyse des résultats d'un suivi à long terme de trois sites adaptés en utilisant des données climatologiques et des données sur la température du sol présentées graphiquement avec des analyses détaillées et la validation de la stabilité thermique avec des abaques de conception. À Tasiujaq les trois méthodes de mitigation qui ont été installées dans la pente du remblai de la piste d’atterrissage sont le remblai à pente douce, le remblai à convection d'air et le drain thermique, et les résultats de l’analyse démontrent comment la pente douce a la meilleure performance, dans les conditions de climat à Tasiujaq. À la piste d'atterrissage de Puvirnituq, le projet étudie un remblai à convection d'air, et conclue que la hauteur actuelle du remblai permet de garantir la stabilité thermique en laissant une marge de sécurité pour les futurs changements climatiques. Sur la route menant à l’aéroport de Salluit, la méthode de mitigation du pergélisol à l'étude est un drain thermique selon les analyses effectuées, la stabilisation thermique n'était pas nécessaire, mais elle a été bénéfique en offrant une grande marge de sécurité à cette importante infrastructure. / For several years now, climate change has had a major influence on the degradation of permafrost, which has a direct impact on infrastructure stability. Nunavik is the northern part of the province of Quebec where there are no roads or railways connecting the villages. Air and marine transportation are therefore essential to ensure communication between the villages and the rest of the province. The construction of transportation embankments inevitably affects the thermal regime of the ground and can lead to thermal degradation of the underlying permafrost, resulting in a significant loss of structural and functional capacity of the infrastructure. To reduce the impacts of permafrost thawing on transportation infrastructure, several protection techniques have been developed. These different techniques are based on reducing the heat input under the infrastructure and increasing the heat extraction from the embankment. The analysis of the results of a long-term monitoring of three test sites is presented in this document. In Tasiujaq, the three mitigation methods that have been installed in the slope of the airstrip embankment are a gentle slope embankment, an air convection embankment and a heat drain, and the results of the analysis demonstrate how the gentle slope performs best under Tasiujaq's climate conditions. At the Puvirnituq airstrip, the project is studying an air convection embankment, finding that the current height of the embankment provides thermal stability by leaving a one-metre safety margin for future climate change. On the road to the Salluit airport, the permafrost mitigation method under study is a heat drain, which, according to the analyses performed, was not necessary in terms of heat balance, but was beneficial in generating a large safety margin for this important infrastructure.
|
8 |
Stabilisation thermique des remblais construits sur le pergélisol sensible au dégel à l'aide d'une approche de conception tenant compte de l'accumulation de la neigeLanouette, Florence 10 February 2024 (has links)
Dans les régions nordiques, l'accumulation préférentielle d'un couvert neigeux isolant en bordure des infrastructures de transport linéaires limite l'extraction de la chaleur en hiver. En terrain pergélisolé, cette modification de l'équilibre thermique peut être une cause importante de la dégradation du pergélisol sous-jacent affectant grandement les propriétés structurales de la chaussée. Puisque les transferts de chaleur dans le manteau neigeux sont essentiellement gouvernés par le mécanisme de conduction, son effet isolant peut être contré en diminuant l'épaisseur de neige présente sur les pentes et aux pieds du remblai. Pour ce faire, l'adoucissement de la pente des talus favorise un écoulement laminaire du vent qui souffle plus facilement la neige loin du remblai et minimise son accumulation. Les présents travaux de recherche ont pour objectif de mettre au point une méthode de conception visant la stabilisation thermique des infrastructures de transport linéaires construites sur le pergélisol en optimisant la géométrie du remblai de façon à prendre en compte l'accumulation de neige préférentielle. L'approche générale de l'étude repose sur l'utilisation d'un modèle bidimensionnel, réalisé à l'aide du logiciel de modélisation géothermique TEMP/W, qui simule l'effet du couvert neigeux sur le sol sous-jacent. L'instrumentation d'un transect de la piste d'atterrissage de Tasiujaq, au Nunavik, a permis d'y documenter le régime thermique du sol et l'évolution du couvert neigeux. À partir de ces données, le facteur n de gel a pu être exprimé en fonction de la hauteur de neige suivant une équation logarithmique. Cette relation empirique sert de condition limite à la surface du modèle géothermique. Le modèle, calibré et validé à l'aide de températures collectées au site d'essai de Tasiujaq, permet de quantifier l'impact de la géométrie du remblai sur le gradient de température dans le sol d'infrastructure. Ce dernier est calculé à partir de la température à l'interface entre le remblai et le sol et celle à la profondeur de variation d'amplitude annuelle nulle. Un gradient de température nul ou négatif est visé afin de préserver le pergélisol. Un tel régime thermique est obtenu en corrigeant la température à l'interface. Ainsi, afin d'obtenir les températures à l'interface correspondantes, des simulations numériques sont effectuées pour six pentes de talus variant de 45 à 14% (11H : 5V à 7H : 1V), et ce, pour trois hauteurs de remblai. Ultimement, ces résultats sont présentés sous la forme d'un outil de calcul de la pente requise pour assurer la stabilité thermique d'un remblai en fonction de la hauteur du remblai pour des sites où le vent et l'orientation favorise l'accumulation de neige. / In northern regions, preferential accumulation of an insulating snowpack along linear transportation infrastructures prevents the extraction of heat in winter. In permafrost terrain, this thermal equilibrium modification can be a significant cause of the underlying permafrost degradation, which affects the structural properties of the roadway. Since heat transfers through the snowpack are essentially controlled by the mechanism of conduction, its insulating effect can be counteracted by decreasing the thickness of snow on the slopes and at the toe of the embankment. To achieve this goal, the gentle slope promotes a laminar wind flow that blows snow away easily and, therefore, minimizes its accumulation. The main objective of this research project is to develop a design method aiming for thermal stabilization of linear transportation infrastructures built on permafrost by optimizing the embankment geometry to consider the preferential accumulation of snow. The general approach of the study relies on the use of a 2D model (produced with the modeling software TEMP/W) simulating the snowpack effect on the underlying ground. The monitoring of a transect at Tasiujaq airstrip, in Nunavik, documents the thermal regime in the ground and the evolution of the snowpack. Based on those data, the freezing n-factor was expressed as a function of the snow thickness following a logarithmic equation. This empirical relation is used as an upper boundary of the geothermal model. Once calibrated and validated with the data collected at theTasiujaq test site, the model allows to quantify the impact of the embankment geometry on the temperature gradient in the natural subgrade ground. This gradient is calculated from the temperature at the interface between the embankment and the ground and the temperature at the depth of zero annual amplitude. A temperature gradient of zero or less is aimed to preserve the permafrost. This ground thermal regime is obtained by correcting the temperature at the interface. Therefore, numeric simulations are run for six slopes between 45 and 14% and for three embankment thickness. Finally, these results are presented through an engineering tool calculating the slope needed to assure the thermal stability of the infrastructure depending of the embankment height.
|
9 |
Quantitative risk analysis for linear infrastructure supported by permafrost : methodology and computer programBrooks, Heather 06 March 2024 (has links)
Le pergélisol est omniprésent dans l’Arctique et l’Antarctique, et il est présent en haute altitude partout dans le monde. Les communautés et le développement industriel des régions pergélisolées ont besoin d’infrastructures de transport (routes, aéroports, chemins de fer, etc.), sachant que le transport y revêt une importance vitale au niveau social, économique et politique (Regehr, Milligan et Alfaro 2013). Toutefois, les changements climatiques auront des répercussions sur les infrastructures de transport existantes et futures en Alaska de l’ordre de 282 à 550 M$ (2015 USD), selon les scénarios d’émissions (Melvin et al. 2016). Vu ces conditions, des outils sont nécessaires pour aider les décideurs à prioriser l’entretien, le remplacement et la construction des infrastructures, et potentiellement justifier l’utilisation des stratégies de mitigation pour les remblais sur pergélisol. Des méthodes d’analyse de risque peuvent être utilisées, mais leur application en ingénierie du pergélisol est actuellement limitée. Le risque est un produit du hasard, de la conséquence et de la vulnérabilité pour chacun des dangers considérés. La probabilité et le coût de l’occurrence d’un danger sont respectivement un hasard et une conséquence, tandis que la vulnérabilité corrèle le dommage possible avec la conséquence. Comme il existe peu de données de défaillance pour les installations sur pergélisol, le risque doit être déterminé à l’aide des méthodes d’analyse de fiabilité (premier-ordre deuxièmemoment ou simulations de Monte Carlo), qui intègrent les incertitudes des paramètres d’entrée pour déterminer la variabilité des résultats. Ces méthodes exigent la caractérisation de l’incertitude des variables aléatoires, ce qui peut être difficile en l’absence de données suffisantes, souvent plus que nécessaire dans la pratique actuelle. En outre, ces méthodes d’analyse de fiabilité exigent une fonction d’état limite pour que le danger soit analysé. Les dangers communs qui affectent les remblais sur pergélisol incluent : le tassement, la fissuration, la rupture soudaine, le déplacement latéral du remblai, le drainage et l’accumulation d’eau en pied de remblai, et les glissements de la couche active. Parmi ces dangers, seuls quelques-uns ont des fonctions d’état limite déterminées ou qui peuvent être approfondies par l’auteure. Les dangers associés à ces fonctions d’état limite ou de hasard comprennent : les tassements totaux et différentiels au dégel, la formation d’arche par le positionnement de particules audessus de cavité, les glissements de la couche active, la rupture de la pente du ponceau et l’affaissement de la structure du ponceau. Un programme a été créé sur le logiciel Excel pour calculer le risque des installations linéaires construites sur un remblai de pergélisol en utilisant les méthodes statistiques appliquées aux fonctions d’état limite afin de déterminer les dangers communs aux infrastructures sur pergélisol, ainsi que d'estimer les coûts directs de réparation et les facteurs d’échelle permettant de tenir compte des coûts indirects des dommages causés aux utilisateurs de l’infrastructure et aux communautés concernées. Les calculs des risques sont basés sur les propriétés géotechniques et l’incertitude climatique, telles que caractérisées par des fonctions de densité de probabilité, en utilisant les méthodes statistiques de simulations de Monte Carlo. Une analyse de la fragilité du réchauffement climatique permet de recalculer les dangers à partir des variations des températures de l’air. Les analyses répétées le long de l’infrastructure fournissent un profil de risque actuel ainsi qu'un profil tenant compte du réchauffement climatique. Le programme a servi à déterminer les dangers pour la route d’accès à l’aéroport de Salluit, et l'évaluation des dangers, des risques et de la rentabilité a été effectuée pour l’aéroport international d’Iqaluit / Permafrost is ubiquitous in the Arctic and Antarctic, and present in high elevation regions throughout the world. The communities and industrial development in permafrost regions require transportation infrastructures (roadways, airports, railways, etc.) and, in these regions, transportation is of vital social, economic, and political importance (Regehr, Milligan, and Alfaro 2013). However, warming climate conditions will endanger existing and future transportation infrastructure in Alaska to the tune of $282 to $550 million (2015 USD) depending on future emission scenarios (Melvin et al. 2016). Given these conditions, tools are required to aid decisionmakers in prioritizing infrastructure maintenance, replacement, and construction, and potentially justifying the use of mitigation strategies of permafrost embankments. Risk analysis methods can be used but their existing application to permafrost engineering is limited. Risk is a product of hazard, consequence and vulnerability for each of the dangers under consideration. The probability and costs of a danger’s occurrence is a hazard and the consequence, respectively, while vulnerability correlated the damage with the consequence. Since little failure data is available for permafrost infrastructure, the hazard must be determined from reliability analysis methods (First-Order Second-Moment or Monte Carlo Simulation), which aggregate the uncertainty of input parameters to determine the result’s variation. These methods require the characterization of random variable uncertainty, which can be difficult without sufficient data, often more than the current standard-of-practice. Additionally, the method requires a limit state function for the danger to be analyzed. Common dangers effecting permafrost embankment infrastructure included: settlement, cracking, sudden collapse, lateral embankment spreading, drainage and ponding water, and active layer detachment landslides. Of these dangers, only a few have existing limit state functions or have limit state functions that can be developed by the author. The dangers with limit state functions or hazard functions include: total and differential thaw settlement, particle position bridging over voids, active layer detachment landslides, and culvert gradient and structural failure. A Microsoft Excel-based program was created to calculate the risk for permafrost embankment linear infrastructure, using statistical methods applied to limit state functions to determine hazards for common permafrost dangers, estimated direct costs for the repair of a hazard’s occurrence, and scaling factors to account for the indirect costs of damage to the infrastructure’s users and connected communities. Hazard calculations are based on geotechnical property and climate uncertainty, as characterized by probability density functions, using Monte Carlo Simulation methods. A climate change fragility analysis recalculates the hazard with warming air temperatures. Repeated analyses along the infrastructure provide a risk profile of the infrastructure, now and with a warming climate. The program is used to determine hazard for the Airport Access Road in Salluit, and hazard, risk and cost/benefit assessments were conducted using this program for the Iqaluit International Airport.
|
10 |
Experimentation of mitigation techniques to reduce the effects of permafrost degradation on transportation infrastructures at Beaver Creek experimental road site, Alaska Highway, YukonMalenfant Lepage, Julie 17 January 2025 (has links)
Les méthodes de design et de construction des routes développés dans le sud canadien ont maintenant besoin d’être adaptés aux environnements nordiques du pays afin de prévenir le dégel dramatique du pergélisol lors de la construction d’une nouvelle route. De plus, le réchauffement climatique occasionne présentement d’importants problèmes de stabilité des sols dans le nord canadien. Ces facteurs causent des pertes importantes au niveau des capacités fonctionnelles et structurales de l’Alaska Highway au Yukon sur un segment de plus de 200 km situé entre le village de Destruction Bay et la frontière de l’Alaska. Afin de trouver des solutions rentables à long terme, le ministère du transport du Yukon (en collaboration avec le Federal Highway Administration du gouvernement américain, Transports Canada, l’Université Laval, l’Université de Montréal et l’Alaska University transportation Center) a mis en place 12 sections d’essais de 50 mètres de longueur sur l’autoroute de l’Alaska près de Beaver Creek en 2008. Ces différentes sections d’essais ont été conçues pour évaluer une ou plusieurs méthodes combinées de stabilisation thermique telles que le drain thermique, le remblai à convection d’air, le pare-neige / pare-soleil, le remblai couvert de matières organiques, les drains longitudinaux, le déblaiement de la neige sur les pentes et la surface réfléchissante. Les objectifs spécifiques de la recherche sont 1) d’établir les régimes thermiques et les flux de chaleur dans chacune des sections pour les 3 premières années de fonctionnement ; 2) de documenter les facteurs pouvant favoriser ou nuire à l’efficacité des systèmes de protection et ; 3) de déterminer le rapport coûts/bénéfices à long terme pour chacune des techniques utilisées. Pour ce faire, une nouvelle méthode d’analyse, basée sur la mesure de flux d’extraction de chaleur Hx et d’induction Hi à l’interface entre le remblai et le sol naturel, a été utilisée dans cette étude. Certaines techniques de protection du pergélisol démontrent un bon potentiel durant leurs 3 premières années de fonctionnement. C’est le cas pour le remblai à convection d’air non-couvert, le remblai à convection d’air pleine largeur, les drains longitudinaux, le pare-soleil / pare-neige et la surface réfléchissante. Malheureusement, des problèmes dans l'installation des drains thermiques ont empêché une évaluation complète de leur efficacité. / Road design and construction techniques developed in southern Canada definitely need to be adapted to northern environment to prevent dramatic permafrost thawing after new road construction. Furthermore, climate warming causes now important soil stability problems in the Canadian far north. All these factors lead to a loss of the functional and structural capacities of the Alaska Highway over a 200-km section mainly from Destruction Bay to the Alaska border. To find long term and cost-effective solutions, Yukon Highways and Public Works (in collaboration with the Alaska University Transportation Center, Transport Canada, le U.S. Federal Highways Administration, l’Université de Montréal and l’Université Laval) constructed 12 instrumented sections on the Alaska Highway near Beaver Creek (Yukon) in 2008. These sections experiment one or several combined methods of thermal stabilization such as convection air embankment, heat drains, snow/sun shed, grass-covered embankment, longitudinal culverts, reflecting surfaces and snow clearing on embankment slopes. The main objectives of this project are 1) to analyze the ground thermal regime and the heat fluxes for each of the 12 sections during their first three years in service; 2) to document all factors which can facilitate or disrupt the efficiency of the protection systems and; 3) to determine the long term costs / benefits ratio for every technique tested. In order to do this, a new method based on the calculation of heat extraction Hx and heat induction Hi index at the interface between the embankment and the natural ground has been used in this study. The permafrost mitigation techniques that showed good potential for cooling by reducing active layer thicknesses were the ACE uncovered, the longitudinal culverts, the snow/sun shed and the light-coloured aggregate BST (although this was only effective along the central part of the highway). Unfortunately, problems in the installation of the heat drain techniques prevented a full assessment of their effectiveness. The durability of the sections as well as their long-term cooling potential must also be assessed to complete the economic analysis provided in this study.
|
Page generated in 0.0832 seconds