• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multidimensional Linear Systems and Robust Control

Malakorn, Tanit 16 April 2003 (has links)
This dissertation contains two parts: Commutative and Noncommutative Multidimensional ($d$-D) Linear Systems Theory. The first part focuses on the development of the interpolation theory to solve the $H^{\infty}$ control problem for $d$-D linear systems. We first review the classical discrete-time 1D linear system in the operator theoretical viewpoint followed by the formulations of the so-called Givone-Roesser and Fornasini-Marchesini models. Application of the $d$-variable $Z$-transform to the system of equations yields the transfer function which is a rational function of several complex variables, say $\mathbf{z} = (z_{1}, \dots, z_{d})$. We then consider the output feedback stabilization problem for a plant $P(\mathbf{z})$. By assuming that $P(\mathbf{z})$ admits a double coprime factorization, then a set of stabilizing controllers $K(\mathbf{z})$ can be parametrized by the Youla parameter $Q(\mathbf{z})$. By doing so, one can convert such a problem to the model matching problem with performance index $F(\mathbf{z})$, affine in $Q(\mathbf{z})$. Then, with $F(\mathbf{z})$ as the design parameter rather than $Q(\mathbf{z})$, one has an interpolation problem for $F(\mathbf{z})$. Incorporation of a tolerance level on $F(\mathbf{z})$ then leads to an interpolation problem of multivariable Nevanlinna-Pick type. We also give an operator-theoretic formulation of the model matching problem which lends itself to a solution via the commutant lifting theorem on the polydisk. The second part details a system whose time-axis is described by a free semigroup $\mathcal{F}_{d}$. Such a system can be represented by the so-called noncommutative Givone-Roesser, or noncommutative Fornasini-Marchesini models which are analogous to those in the first part. Application of a noncommutative $d$-variable $Z$-transform to the system of equations yields the transfer function expressed by a formal power series in several noncommuting indeterminants, say $T(z) = \sum_{v \in \mathcal{F}_{d}}T_{v}z^{v}$ where $z^{v} = z_{i_{n}} \dotsm z_{i_{1}}$ if $v = g_{i_{n}} \dotsm g_{i_{1}} \in \mathcal{F}_{d}$ and $z_{i}z_{j} \neq z_{j}z_{i}$ unless $i = j$. The concepts of reachability, controllability, observability, similarity, and stability are introduced by means of the state-space interpretation. Minimal realization problems for noncommutative Givone-Roesser or Fornasini-Marchesini systems are solved directly by a shift-realization procedure constructed from appropriate noncommutative Hankel matrices. This procedure adapts the ideas of Schützenberger and Fliess originally developed for "recognizable series" to our systems. / Ph. D.
2

Robust analysis and synthesis for uncertain negative-imaginary systems

Song, Zhuoyue January 2011 (has links)
Negative-imaginary systems are broadly speaking stable and square (equal number of inputs and outputs) systems whose Nyquist plot lies underneath (never touches for strictly negative-imaginary systems) the real axis when the frequency varies in the open interval 0 to ∞. This class of systems appear quite often in engineering applications, for example, in lightly damped flexible structures with collocated position sensors and force actuators, multi-link robots, DC machines, active filters, etc. In this thesis, robustness analysis and controller synthesis methods for uncertain negative-imaginary systems are explored. Two new reformulation techniques are proposed that facilitate both the robustness analysis and controller synthesis for uncertain negative-imaginary systems. These reformulations are based on the transformation from negative-imaginary systems to a bounded-real framework via the positive-real property. In the presence of strictly negative-imaginary uncertainty, the robust stabilization problem is posed in an equivalent H∞ control framework; similarly, a negative-imaginary robust performance analysis problem is cast into an equivalent μ-framework. The latter framework also allows robust stability analysis when the perturbations are a mixture of bounded-real and negative-imaginary uncertainties. The proposed two techniques pave the way for existing H∞ control and μ theory to be applied to robustness analysis and controller synthesis for negative-imaginary systems. In addition, a static state-feedback synthesis method is proposed to achieve robust stability of a system in the presence of strictly negative-imaginary uncertainties. The method is developed in the LMI framework, which can be solved efficiently using convex optimization techniques. The controller synthesis method is based on the negative-imaginary stability theorem: a positive feedback interconnection of two negative-imaginary systems is internally stable if and only if the DC loop gain is contractive and at least one of the systems in the interconnected loop is strictly negative-imaginary. Also, in order to handle non-strict negative-imaginary uncertainties, a strongly strictly negative-imaginary lemma is proposed that helps to ensure the strictly negative-imaginary property of the nominal closed-loop system for robustness. To this end, a state-space characterization for strictly negative-imaginary property is given for non-minimal systems where the conditions are convex and hence numerically attractive. The results in this thesis hence facilitate both the robustness analysis and controller synthesis for negative-imaginary systems that quite often arise in practical scenarios. In addition, they can be applied to quantify the worse-case performance for this class of systems. Therefore, the proposed results have important implications in controller synthesis for uncertain negative-imaginary systems that achieve not only robust stabilization but also robust performance.

Page generated in 0.0718 seconds